Skip to main content
Log in

Effect of Tb3+ and Ce3+ Co-doping on the Structure and Photoluminescence Properties of Hexagonal Boron Nitride Phosphors

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the paper, we have successfully prepared hexagonal boron nitride (h-BN:Tb3+, Ce3+) phosphors with melamine as the nitrogen source. The X-ray powder diffraction patterns confirm that the sample possesses a hexagonal crystal structure within the P\(\overline6\)m2 space group. It is interesting that the co-doping combination of Tb3+ and Ce3+ can markedly enhance the threshold concentration of doped activators within the limited solid solution of h-BN phosphors. Under 302 nm excitation, the h-BN:Ce3+ phosphors exhibit broadband blue light emission at 406 nm. In h-BN:Tb3+, Ce3+ phosphors, the co-doping of Ce3+ not only ensures high phase purity but also results in strong green light emission. The energy transfer efficiency from Ce3+ to Tb3+ is about 55%. The fluorescence lifetime increases with the increase of Ce3+ and Tb3+ concentration, and the fluorescence lifetime of h-BN:0.025Tb3+, 0.05Ce3+ phosphor reached 2.087 ms. Additionally, the h-BN:0.025Tb3+, 0.05Ce3+ phosphor exhibits excellent thermal performance with an activation energy value of 0.2825 eV. Moreover, the photoluminescence quantum yield of the sample exceeds 52%. Therefore, the h-BN:Tb3+, Ce3+ samples can be used as green phosphors for solid state lighting and fluorescent labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Li J, Liang Q, Hong J-Y, Yan J, Dolgov L, Meng Y, Xu Y, Shi J, Wu M (2018) White light emission and enhanced color stability in a single-component host. ACS Appl Mater Interfaces 10:18066–18072. https://doi.org/10.1021/acsami.8b02716

    Article  CAS  PubMed  Google Scholar 

  2. Wang L, Xie R-J, Suehiro T, Takeda T, Hirosaki N (2018) Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chem Rev 118:1951–2009. https://doi.org/10.1021/acs.chemrev.7b00284

    Article  CAS  PubMed  Google Scholar 

  3. Sharma M, Jung N, Yoo SJ (2017) Toward high-performance Pt-based nanocatalysts for oxygen reduction reaction through organic-inorganic hybrid concepts. Chem Mater 30:2–24. https://doi.org/10.1021/acs.chemmater.7b03422

    Article  CAS  Google Scholar 

  4. Sushma KC, Kumar S, Nagaraju G, Aarti DP, Reddy MBM, Rudresha MS, Basavaraj RB (2022) Color tunable SrZrO3: Sm3+ nanopowders with satisfactory photoluminescent, band engineering properties for warm white LEDs and advanced forensic applications. J Mol Struct 1254:132302. https://doi.org/10.1016/j.molstruc.2021.132302

    Article  CAS  Google Scholar 

  5. Tan J, Dai Y, Yang S, Wu J, Yu B, Zhang Y, Duan C, Zhao Q (2022) Yellow phosphors of high quantum yields excitable by both ultraviolet and blue light with Gd3BWO9 as the host. J Solid State Chem 306:122793. https://doi.org/10.1016/j.jssc.2021.122793

    Article  CAS  Google Scholar 

  6. Pust P, Weiler V, Hecht C, Tücks A, Wochnik AS, Henß A-K, Wiechert D, Scheu C, Schmidt PJ, Schnick W (2014) Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material. Nat Mater 13:891–896. https://doi.org/10.1038/NMAT4012

    Article  CAS  PubMed  Google Scholar 

  7. Zhao J, Guo C, Li T, Su X, Zhang N, Chen J (2016) Synthesis, electronic structure and photoluminescence properties of Ba2BiV3O11:Eu3+ red phosphor. Dyes Pigm 132:159–166. https://doi.org/10.1016/j.dyepig.2016.04.052

    Article  CAS  Google Scholar 

  8. Li S, Wang L, Tang D, Cho Y, Liu X, Zhou X, Lu L, Zhang L, Takeda T, Hirosaki N, Xie R-J (2017) Achieving high quantum efficiency narrow-band β-sialon:Eu2+ phosphors for high-brightness LCD backlights by reducing the Eu3+ luminescence killer. Chem Mater 30:494–505. https://doi.org/10.1021/acs.chemmater.7b04605

    Article  CAS  Google Scholar 

  9. Tian J, Zhuang W (2021) Thermal stability of nitride phosphors for light-emitting diodes. Inorg Chem Front 8:4933–4954. https://doi.org/10.1039/d1qi00993a

    Article  CAS  Google Scholar 

  10. Wagatha P, Weiler V, Schmidt PJ, Schnick W (2018) Tunable red luminescence in nitridomagnesoaluminates α-Sr2[MgAl5N7]:Eu2+, β-Sr2[MgAl5N7]:Eu2+, and Sr8[LiMg2Al21N28]:Eu2+. Chem Mater 30:1755–1761. https://doi.org/10.1021/acs.chemmater.8b00106

    Article  CAS  Google Scholar 

  11. Liu X, Song Z, Wang S, Liu Q (2019) The red persistent luminescence of (Sr, Ca)AlSiN3:Eu2+ and mechanism different to SrAl2O4:Eu2+, Dy3+. J Lumin 208:313–321. https://doi.org/10.1016/j.jlumin.2018.12.069

    Article  CAS  Google Scholar 

  12. Li Y, Wu Q, Wang X, Ding J, Long Q, Wang Y (2014) Tunable blue-green-emitting Ca3Si2O4N2:Ce3+, Eu2+ phosphor with energy transfer for light-emitting diodes. RSC Adv 4:63569–63575. https://doi.org/10.1039/c4ra10846a

    Article  CAS  Google Scholar 

  13. Wu Q, Li Y, Wang X, Zhao Z, Wang C, Li H, Mao A, Wang Y (2014) Novel optical characteristics of Eu2+ doped and Eu2+, Ce3+co-doped LiSi2N3 phosphors by gas-pressed sintering. RSC Adv 4:39030. https://doi.org/10.1039/c4ra05502k

    Article  CAS  Google Scholar 

  14. Hoerder GJ, Seibald M, Baumann D, Schröder T, Peschke S, Schmid PC, Tyborski T, Pust P, Stoll I, Bergler M, Patzig C, Reißaus S, Krause M, Berthold L, Höche T, Johrendt D, Huppertz H (2019) Sr[Li2Al2O2N2]:Eu2+ — A high performance red phosphor to brighten the future. Nat Commun 10:1824. https://doi.org/10.1038/s41467-019-09632-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chung S-L, Huang S-C (2014) Combustion synthesis and photoluminescence properties of red-emitting CaAlSiN3:Eu2+ phosphor for white-LEDs. Materials 7:7828–7842. https://doi.org/10.3390/ma7127828

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fan Z, Qie Y, Guo D, Liu Y, Kong F, Shi Z, Yang H (2020) Multicolor tunable emission and energy transfer in AlN:Tb3+, Eu3+ phosphors. J Mater Sci Mater Electron 32:210–218. https://doi.org/10.1007/s10854-020-04756-y

    Article  CAS  Google Scholar 

  17. Wang L, Sun D, Lyu Z, Shen S, Lu Z, Zhao H, Wang J, You H (2022) A color-tunable nitride phosphor for near-ultraviolet excitation of white light-emitting diodes. Chemistry 17:e202200639. https://doi.org/10.1002/asia.202200639

    Article  CAS  Google Scholar 

  18. Lo I (2018) Advances in GaN crystals and their applications. Crystals 8:117. https://doi.org/10.3390/cryst8030117

    Article  CAS  Google Scholar 

  19. Lei F, Lei X, Ye Z, Zhao N, Yang X, Shi Z, Yang H (2018) Photoluminescent properties of AlN: Mn2+ phosphors. J Alloy Compd 763:466–470. https://doi.org/10.1016/j.jallcom.2018.05.291

    Article  CAS  Google Scholar 

  20. Guan J, Wang Y, Cheng L, Xie Y, Zhang L (2018) Fabrication and characterization of short silicon nitride fibers from direct nitridation of ferrosilicon in N2 Atmosphere. Materials 11:2003. https://doi.org/10.3390/ma11102003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ichikawa S, Shiomi K, Morikawa T, Timmerman D, Sasaki Y, Tatebayashi J, Fujiwara Y (2021) Eu-doped GaN and InGaN monolithically stacked full-color LEDs with a wide color gamut. Appl Phys Express 14:031008. https://doi.org/10.35848/1882-0786/abe603

    Article  CAS  Google Scholar 

  22. Kumar M, Sunny A, Kumar K-S, Seong S-H (2020) Park, GaN phosphors converted white light-emitting diodes for high luminous efficacy and improved thermal stability. IET Optoelectron 14:155–158. https://doi.org/10.1049/iet-opt.2019.0084

    Article  Google Scholar 

  23. Wang W, Zhang P, Wang X, Lei X, Ding H, Yang H (2015) Bifunctional AlN: Tb semiconductor with luminescence and photocatalytic properties. RSC Adv 5:90698–90704. https://doi.org/10.1039/C5RA15716A

    Article  CAS  Google Scholar 

  24. Ali S, Jonson B, Pomeroy MJ, Hampshire S (2015) Issues associated with the development of transparent oxynitride glasses. Ceram Int 41:3345–3354. https://doi.org/10.1016/j.ceramint.2014.11.030

    Article  CAS  Google Scholar 

  25. Kumar A, Malik G, Chandra R, Mulik RS (2020) Bluish emission of economical phosphor h-BN nanoparticle fabricated via mixing annealing route using non-toxic precursor. J Solid State Chem 288:121430. https://doi.org/10.1016/j.jssc.2020.121430

    Article  CAS  Google Scholar 

  26. Weng Q, Wang X, Wang X, Bando Y, Golberg D (2016) Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem Soc Rev 45:3989–4012. https://doi.org/10.1039/c5cs00869g

    Article  CAS  PubMed  Google Scholar 

  27. Wu Z, Wang P, Wu J, Wei J, Sun Y, Wang N, Zhao Z (2020) Ultra-stable phosphor of h-BN white graphene-loaded all-inorganic perovskite nanocrystals for white LEDs. J Lumin 219:116941. https://doi.org/10.1016/j.jlumin.2019.116941

    Article  CAS  Google Scholar 

  28. Lin J, Feng C, He X, Wang W, Fang Y, Liu Z, Li J, Tang C, Huang Y (2016) Europium (III) organic complexes in porous boron nitride microfibers: efficient hybrid luminescent material. Sci Rep 6:34576. https://doi.org/10.1038/srep34576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jung JY, Hong WT, Park JY, Kim Y-K, Yang HK (2023) Characteristics of red emitting boron nitride nanoparticles. Solid State Sci 142:107252. https://doi.org/10.1016/j.solidstatesciences

    Article  CAS  Google Scholar 

  30. Wu J, Yin L, Zhang L (2013) Tuning the electronic structure, bandgap energy and photoluminescence properties of hexagonal boron nitride nanosheets via a controllable Ce3+ ions doping. RSC Adv 3:7408–7418. https://doi.org/10.1039/c3ra23132a

    Article  CAS  Google Scholar 

  31. Jung JY, Kim J, Kim YD, Kim Y-K, Cha H-R, Lee J-G, Son CS, Hwang D (2021) Enhanced crystallinity and luminescence characteristics of hexagonal boron nitride doped with cerium ions according to tempering temperatures. Materials 14:193. https://doi.org/10.3390/ma14010193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jung J-Y, Baek Y-K, Lee J-G, Kim Y-D, Cho S-H, Kim Y-K (2018) The structure and luminescence of boron nitride doped with Ce ions. Appl Phys A 124:1–6. https://doi.org/10.1007/s00339-018-2054-y

    Article  CAS  Google Scholar 

  33. Lin CC, Liu Y-P, Xiao ZR, Wang Y-K, Cheng B-M, Liu R-S (2014) All-in-one light-tunable borated phosphors with chemical and luminescence dynamical control resolution. ACS Appl Mater Interfaces 6:9160–9172. https://doi.org/10.1021/am501232y

    Article  CAS  PubMed  Google Scholar 

  34. Shang M, Li G, Kang X, Yang D, Geng D, Lin J (2011) Tunable luminescence and energy transfer properties of Sr3AlO4F:RE3+ (RE = Tm/Tb, Eu, Ce) phosphors. ACS Appl Mater Interfaces 3:2738–2746. https://doi.org/10.1021/am200534u

    Article  CAS  PubMed  Google Scholar 

  35. Lin J, Hu Y, Chen L, Wang Z, Zhang S (2016) Luminescence and energy transfer properties of Sr3Y(PO4)3:Ce3+, Mn2+ phosphors. Physica B 485:39–44. https://doi.org/10.1016/j.physb.2016.01.012

    Article  CAS  Google Scholar 

  36. Anh NDQ, Minh THQ, Nhan NHK (2016) Enhancing Lighting Performance of White LED Lamps by Green Emitting Ce Tb Phosphor. Adv Electr Electron Eng 14:609–614. https://doi.org/10.15598/aeee.v14i5.1795

    Article  Google Scholar 

  37. Huo J, Lü W, Shao B, Feng Y, Zhao S, You H (2017) Color tunable emission via efficient Ce3+ →Tb3+ energy transfer pair in MgYSi2O5N oxynitride phosphor for near-UV-pumped white LEDs. Dyes Pigm 139:174–179. https://doi.org/10.1016/j.dyepig.2016.12.012

    Article  CAS  Google Scholar 

  38. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767. https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

  39. Wang S, Liu X, Qu B, Song Z, Wang Z, Zhang S, Wang F, Geng W-T, Liu Q (2019) Green persistent luminescence and the electronic structure of β-Sialon:Eu2+. J Mater Chem C 7:12544–12551. https://doi.org/10.1039/c9tc03833g

    Article  CAS  Google Scholar 

  40. Yu Y, Chen Y, Chen L, Shen Y, Liu X, Deng D, Xu S (2020) A novel aluminum-oxynitride phosphor Mg0.695Si0.695Al1.39O3.65N0.35:Ce3+, Tb3+, Mn2+ based on cation substitution with double sites related multicolor-tunable luminescence. J Lumin 226:117439. https://doi.org/10.1016/j.jlumin.2020.117439

    Article  CAS  Google Scholar 

  41. Ullah Khan W, Zhou L, Li X, Zhou W, Khan D, Niaz S-I, Wu M (2021) Single phase white LED phosphor Ca3YAl3B4O15:Ce3+, Tb3+, Sm3+ with superior performance: color-tunable and energy transfer study. Chem Eng J 410:128455. https://doi.org/10.1016/j.cej.2021.128455

    Article  CAS  Google Scholar 

  42. Velusamy P, Babu RR, Ramamurthi K, Viegas J, Elangovan E (2015) Structural, microstructural, optical and electrical properties of spray deposited rare-earth metal (Sm) ions doped CdO thin films. J Mater Sci Mater Electron 26:4152–4164. https://doi.org/10.1007/s10854-015-2960-0

    Article  CAS  Google Scholar 

  43. Cao R, Lin J, Lan B, Cheng F, Chen T, Li L, Liu R, Wang J (2023) Luminescence properties, tunable emission and energy transfer of Na3Sc2(PO4)3:Sm3+, Bi3+ phosphors. J Mol Struct 1282:135221. https://doi.org/10.1016/j.molstruc.2023.135221

    Article  CAS  Google Scholar 

  44. Wang W, Zhang P, Wang X, Lei X, Chen X, Ding H, Yang H (2016) AlN with strong blue emission synthesized through a solventless route. Nano 11:1650016. https://doi.org/10.1142/S1793292016500168

    Article  CAS  Google Scholar 

  45. Wang W, Lei X, Ye Z, Zhao N, Yang H (2017) The luminescent properties and latent fingerprint identification application of AlN:Ce, Tb phosphors. J Alloy Compd 705:253–261. https://doi.org/10.1016/j.jallcom.2017.02.121

    Article  CAS  Google Scholar 

  46. Raghupathi P, Jamalaiah BC (2022) Structure, morphology and optical analysis of Dy3+ -doped Li6AlGd(BO3)4 phosphors for lighting applications. J Mol Struct 1268:133695. https://doi.org/10.1016/j.molstruc.2022.133695

    Article  CAS  Google Scholar 

  47. Zhou L, Hong J, Li X, Shi J, Tanner PA, Wong KL, Wu M (2020) Bright green emitting CaYAlO4:Tb3+, Ce3+ phosphor: energy transfer and 3D-printing artwork. Adv Opt Mater 8:2000523. https://doi.org/10.1002/adom.202000523

    Article  CAS  Google Scholar 

  48. Mondal K, Manam J (2020) Colour-tunable luminescence and thermal stability of blue-green emitting Ba2MgSi2O7:Ce3+, Tb3+ phosphors. J Mol Struct 1215:128262. https://doi.org/10.1016/j.molstruc.2020.128262

    Article  CAS  Google Scholar 

  49. Sun L, Devakumar B, Liang J, Wang S, Sun Q, Huang X (2019) Highly efficient Ce3+ → Tb3+ energy transfer induced bright narrowband green emissions from garnet-type Ca2YZr2(AlO4)3:Ce3+, Tb3+ phosphors for white LEDs with high color rendering index. J Mater Chem C 7:10471–10480. https://doi.org/10.1039/c9tc03664d

    Article  CAS  Google Scholar 

  50. Li W, Qiu M, Li Y, Zhang S, Li Q, Lin W, Mu Z, Wu F (2019) Energy transfer and multicolor-tunable emissions of Sr3La6(SiO4)6:Ce3+, Tb3+, Eu3+. J Electron Mater 49:1404–1411. https://doi.org/10.1016/S1010-6030(03)00381-2

    Article  CAS  Google Scholar 

  51. Ding J, Huang S, Zheng H, Huang L, Zeng P, Ye S, Wu Q, Zhou J (2021) A novel broad-band cyan light-emitting oxynitride based phosphor used for realizing the full-visible-spectrum lighting of white LEDs. J Lumin 231:117786. https://doi.org/10.1016/j.jlumin.2020.117786

    Article  CAS  Google Scholar 

  52. Tang H, Zhang X, Cheng L, Wang H, Xie J, Yu X, Wang Y, Mi X, Liu Q (2021) Luminescence properties and applications of Ce3+-activated Lu3Mg2GaSi2O12 yellow-green emission garnet phosphors. Ceram Int 47:13100–13106. https://doi.org/10.1016/j.ceramint.2021.01.174

    Article  CAS  Google Scholar 

  53. Iwaki M, Uematsu K, Sato M, Toda K (2023) Structure and luminescence studies of a Ce3+-activated Ba5La3MgAl3O15 green-emitting phosphor. Inorg Chem 62:1250–1256. https://doi.org/10.1021/acs.inorgchem.2c04018

    Article  CAS  PubMed  Google Scholar 

  54. Du P, Yu JS (2017) Photoluminescence, cathodoluminescence and thermal stability of Sm3+-activated Sr3La(VO4)3 red-emitting phosphors. Luminescence 32:1504–1510. https://doi.org/10.1002/bio.3351

    Article  CAS  PubMed  Google Scholar 

  55. Zhou Y, Hu Y, Liu R, Liu Y, Zhuang W, Cao M, Gao T, Tian J, Li Y, Chen G (2021) Blue-emitting Sr1-xCaxLu2O4:Ce3+ phosphors for high CRI white LEDs. J Rare Earths 39:627–633. https://doi.org/10.1016/j.jre.2020.04.016

    Article  CAS  Google Scholar 

  56. Huang X, Xu Z, Devakumar B (2023) Near-UV-excitable broadband green-emitting Ca2LaHf2GaAl2O12:Ce3+ garnet-type phosphors for high color rendering warm-white LEDs. Ceram Int 49:26420–26427. https://doi.org/10.1016/j.ceramint.2023.05.178

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (NSFC) (No. 22165016, 22066014), Applied Basic Research Foundation of Yunnan Province (No. 2018FH001-008), Reserve Talents of Young and Middle-aged Academic and Technical Leaders in Yunnan Province (No. 202205AC160042), the Yunnan Provincial Education Department Scientific Research Fund Project of Yunnan Province (No. 2022Y740), and Innovative Research Teams (in Science and Technology) in the University of Yunnan Province (IRTSTYN).

Author information

Authors and Affiliations

Authors

Contributions

Lunshuai Nie: Conceptualization, Software, Data curation, Writing–original draft, Methodology, Investigation. Kai Jia: Conceptualization, Formal analysis, Software, Validation. Hongguang Guo: Data curation, Investigation, Writing–original draft. Jiaqin He: Investigation, Methodology. Zhehui Weng and Yizhou Li: Resources, Supervision, Validation. Haidong Ju: Funding acquisition, Resources, Supervision, Writing–review & editing.

Corresponding author

Correspondence to Haidong Ju.

Ethics declarations

Ethics Approval

This paper meets the ethical standards of this journal.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2510 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, L., Jia, K., Guo, H. et al. Effect of Tb3+ and Ce3+ Co-doping on the Structure and Photoluminescence Properties of Hexagonal Boron Nitride Phosphors. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03663-3

Keywords

Navigation