Skip to main content
Log in

Preliminary Insights into the Fluorescence and Oxidative Characteristics of Flavin - DNA Systems on PVP - Coated Silver Nanoparticles

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Emissive features of flavins (Riboflavin/RF, Flavin MonoNucleotide/FMN and Flavin Adenine Dinucleotide/FAD) labeled native Deoxyribonucleic Acid (DNA) on Polyvinylpyrrolidone (PVP)-coated silver nanoparticles (SNPs), have been studied. The dual emission of flavins in DNA−PVP-coated SNPs systems is strongly influenced by the reaction time and temperature. Changes in the RF emissive features occur as a side effect when DNA is covalently linked hence, the RF destruction depends on DNA damage. Even if in an oxidation process, the FAD-DNA – PVP-coated SNPs system acts as a weak scavenger of reactive oxygen species, its antioxidant activity is approx. five times higher than that of RF-DNA−PVP-coated SNPs system. Destruction of RF by a riboflavin-mediated DNA photo-oxidation process that occurs on PVP-coated SNPs is suggested. Results have relevance in the redox process of riboflavin and provide valuable information for the further development of novel flavin-based SNPs systems as fluorescent antioxidant markers to solve several biological barriers in humans, such as protein-DNA interaction, cell binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Bensasson RV, Land EJ, Truscott TG (1983) Flash photolysis and pulse radiolysis in biology and medicine. Pergamon Press, Oxford

    Google Scholar 

  2. Mc Cormick DB, Innis WSA, Merrill AH, Bowers-Komro DM, Oka M, Chastain JL (1988) An update on flavin metabolism in rats and humans. In: Edmondson DE, Mc Cormick DB (eds) Flavin and flavoproteins. Walter de Gruyter, New York

    Google Scholar 

  3. Ashoori M, Saedisomeolia A (2014) Riboflavin (vitamin B2) and oxidative stress: a review. Br J Nutr 111:1985–1991 (and refs herein)

    Article  PubMed  CAS  Google Scholar 

  4. Darguzyte M, Holm R, Baier J, Drude N, Schultze J, Koynov K, Schwiertz D, Dadfar SM, Lammers T, Barz M, Kiessling F (2020) Influence of Riboflavin Targeting on Tumor Accumulation and internalization of Peptostar Based Drug Delivery systems. Bioconjug Chem 31:2691–2696

    Article  PubMed  CAS  Google Scholar 

  5. Diaz M, Becker MI, De Ioannes AE, Silva E (1996) Development of monoclonal antibodies against a Riboflavin-Tryptophan Photoinduced Adduct: reactivity to Eye Lens Proteins, Photochem. Photobiol 63:762–767

    Article  CAS  Google Scholar 

  6. Ito K, Inoue S, Yamamoto K, Kawanishi S (1993) S.8-Hydroxydeoxyguanosine formation at the 5′ site of 5′‐GG‐3′ sequences in double‐stranded DNA by UV radiation with riboflavin. J Biol Chem 268:13221–13227

    Article  PubMed  CAS  Google Scholar 

  7. Wu X, Guo LZ, Liu YH, Liu YC, Yang PL, Leung YS, Tai HC, Wang TD, LinjLai JCWCL, Chuang YH, Lin CH, Chou PT, Lai IR, Liu TM (2023) Plasma riboflavin fluorescence as a diagnostic marker of mesenteric ischemia-reperfusion injury in rats. Thromb Res 223:146–154

    Article  PubMed  CAS  Google Scholar 

  8. Wainwright M, Giddens RM (2003) Phenothiazinium photosensitizers: choices in synthesis and application. Dyes Pigm 57:245–257

    Article  CAS  Google Scholar 

  9. Moreira LM, Lyon JP, Romani AP, Severino D, Rodrigues MR, de Oliveira HP(2012) Phenotiazinium Dyes as Photosensitizers (PS) in Photodynamic Therapy (PDT): Spectroscopic Properties and Photochemical Mechanisms, Chap. 14, Advanced Aspects of Spectroscopy. https://doi.org/10.5772/48087. and refs. herein

  10. Mohr H, Knuver-Hopf J, Gravemann U, Redecker-Klein A, Muller TH (2004) West Nile virus in plasma is highly sensitive to methylene blue–light treatment. Transfusion 44:886–890

    Article  PubMed  CAS  Google Scholar 

  11. Tachibana K, Feril LB, Ikeda-Dantsuji Y (2008) Sonodynamic Therapy Ultrasonics 48:253–259

    Article  PubMed  CAS  Google Scholar 

  12. Moan J, Berg K (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53:549–553

    Article  PubMed  CAS  Google Scholar 

  13. Boye E, Moan J (1980) The photodynamic effect of hematoporphyrin on DNA. Photochem Photobiol 31:223–228

    Article  CAS  Google Scholar 

  14. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  PubMed  CAS  Google Scholar 

  15. Anderson RF, Amarsinghe C, Fisher LJ, Mak WB, Parker JE (2000) Reduction in free-radical-induced DNA strand breaks and base damage through fast chemical repair by flavonoids. Free Radical Res 33:91

    Article  CAS  Google Scholar 

  16. Sengupta B, Pahari B, Blackmon L, Sengupta PK (2013) Prospect of Bioflavonoid Fisetin as a quadruplex DNA ligand: a Biophysical Approach. PLoSONE 8(6). https://doi.org/10.1371/journal.pone.0065383

    Article  CAS  Google Scholar 

  17. Bhattacharjee S, Sengupta PK, Bhowmik S (2017) Exploring the preferential interaction of quercetin with VEGF promoter G-quadruplex DNA and construction of a pH-dependent DNA-based logic gate. RSC Adv 7:37230–37240

    Article  CAS  Google Scholar 

  18. Bhattacharjee S, Chakraborty S, Chorell E, Sengupta PK, Bhowmik S(2018) Part A 629–639

  19. Cao Y, He XW, Gao Z (1993) Fluorescence energy transfer between acridine orange and safranine T and its application in the determination of DNA. Talanta 49:377–383

    Article  Google Scholar 

  20. Zhang GM, Pang YH, Shuang SM, Dong C, Choi MMF, Liu DS (2005) Spectroscopic studies on the interaction of safranine T with DNA in β-cyclodextrin and carboxymethyl-β-cyclodextrin. J Photochem Photobiol A 169:153–158

    Article  CAS  Google Scholar 

  21. Bi S, Qiao C, Song D, Tian Y, Gao D, Sun Y, Zhang H (2006) Studies of interactions of flavonoids with DNA using acridine orange as a fluorescence probe, Sens. Actuators B Chem 119:199–208

    Article  CAS  Google Scholar 

  22. Fisher AMR, Murphree AL, Gomer CJ (1995) Clinical and preclinical photodynamic therapy. Laser Surg Med 17:2–31 (and refs. herein)

    Article  CAS  Google Scholar 

  23. A.Murza S, Sanchez-Cortes JV, Garcia-Ramos JM, Guisan C, Alfonso G, Rivas (2000) Interaction of the antitumor drug 9-aminoacridine with guanidinobenzoatase studied by spectroscopic methods: a possible Tumor marker probe based on the fluorescence exciplex emission. Biochemistry 39:10557–10565

    Article  Google Scholar 

  24. Usacheva MN, Teichert MC, Biel MA (2003) The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. J Photochem Photobiol B 71:87–98

    Article  PubMed  CAS  Google Scholar 

  25. Wang Z, Li J, wang J, Zou M, Wang S, Li Y, Kong Y, Xia L (2012) Spectrometry researches on interaction and sonodynamic damage of riboflavin (RF) to bovine serum albumin (BSA). Spectrochim Acta A 87:1–10

    Article  CAS  Google Scholar 

  26. Syafiuddin A, Salmiati MR, Salim ABH, Kueh T, Hadibarata H, Nur (2017) A review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future challenges. J Chin Chem Soc 64, 732–756. and references herein

  27. Muhammad Z, Raza A, Ghafoor S, Naeem A, Naz SS, Riaz S, Ahmed W, Rana NF (2016) PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility. Eur J Pharm Sci 91:251–255

    Article  PubMed  CAS  Google Scholar 

  28. Panzarini E, Mariano S, Vergallo C, Carata E, Fimia GM, Mura F, Rossi M, Vergaro V, Ciccarella G, Corazzari M, Dini L (2017) Glucose capped silver nanoparticles induce cell cycle arrest in hela cells. Toxicol in Vitro 41:64–74

    Article  PubMed  CAS  Google Scholar 

  29. He H, Tao G, Wang Y, Cai R, Guo P, Chen L, Zuo H, Zhao P, Xia Q (2017) In situ green synthesis and characterization of sericin-silver nanoparticle composite with effective antibacterial activity and good biocompatibility. Mater Sci Eng C 80:509–516

    Article  CAS  Google Scholar 

  30. Akter M, Sikder MT, Rahman MM, Ullah AKMA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16

    Article  PubMed  CAS  Google Scholar 

  31. Zheng K, Setyawati MI, Leong DT, Xie J (2018) Antimicrobial silver nanomaterials. Coord Chem Rev 357:1–17

    Article  CAS  Google Scholar 

  32. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol Biol Med 12:789–799

    Article  Google Scholar 

  33. Beztsinna N, Sole M, Taib N, Bestel I (2016) Bioengineered riboflavin in nanotechnology. Biomaterials 80:121–133 (and refs. herein)

    Article  PubMed  CAS  Google Scholar 

  34. Voicescu M, Angelescu DG, Ionescu S, Teodorescu VS (2013) Spectroscopic analysis of the riboflavin-serum albumins interaction on silver nanoparticles. J Nanopart Res 15:1–10

    Article  Google Scholar 

  35. Voicescu M, Ionescu S, Calderon-Moreno JM, Teodorescu VS, Anastasescu M, Culita DC (2019) Tryptophan/Dextran70 based-fluorescent silver nanoparticles: synthesis and Physicochemical Properties. J Fluoresc 29:981–992

    Article  PubMed  CAS  Google Scholar 

  36. Voicescu M, Ionescu S, Manoiu VS, Anastasescu M, Craciunescu O, Moldovan L (2019) Syntehsis and biophysical characteristics of roboflavin/HSA protein system on silver nanoparticles. Mat Sci Eng C 96:30–40

    Article  CAS  Google Scholar 

  37. Voicescu M, Craciunescu O, Calderon-Moreno JM, Anastasescu M, Manoiu VS, Tatia R, Culita DC, Moldovan L (2022) Fluorescent Flavin / PVP-Coated Silver Nanoparticles: Design and Biological Performance. J Fluoresc. https://doi.org/10.1007/s10895-022-02902-2

    Article  PubMed  Google Scholar 

  38. Voicescu M, Craciunescu O, Angelescu DG, Tatia R, Moldovan L (2021) Spectroscopic, molecular dynamics simulation and biological studies of Flavin MonoNucleotide and Flavin Adenine Dinucleotide in biomimetic systems, Spectrochim. Acta A 246:118997

    Article  CAS  Google Scholar 

  39. Voicescu M, Ionita G, Constantinescu T, Vasilescu M (2006) The oxidative activity of Riboflavin studied by luminescence methods: the effect of cysteine, arginine, lysine and histidine amino acids. Rev Roum Chim 51(7–8):683–690

    CAS  Google Scholar 

  40. Voicescu M, Ion R, Meghea A (2010) Evaluation of the oxidative activity of some free base porphyrins by a chemiluminescence method. J Serb Chem Soc 75(3):333–341

    Article  CAS  Google Scholar 

  41. Voicescu M, Nistor CL, Meghea A (2015) Insights into the antioxidant activity of some flavones on Silver nanoparticles using a chemiluminescence method. J Lumin 157:243–248

    Article  CAS  Google Scholar 

  42. Gwinn E, Schultz D, Copp S, Swasey S (2015) DNA-protected silver clusters for nanophotonics. Nanomaterials 5:180–207

    Article  PubMed  PubMed Central  Google Scholar 

  43. Speck WT, Rosenkranz S, Rosenkranz HS (1976) Further observations on the photo-oxidation of DNA in the presence of Riboflavin. Biochim Biophys Acta 435:79–44

  44. Hirayama O, Takagi M, Hukumoto K, Katoh S (1997) Evaluation of antioxidant activity by chemiluminescence. Anal Biochem 247:237–241

    Article  PubMed  CAS  Google Scholar 

  45. Parejo I, Codina C, Petrakis C, Kefalas P (2000) Evaluation of scavenging activity assessed by Co(II)/EDTA-induced luminol chemiluminescnce and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical assay. J Pharmacol Toxicol Meth 44:507–512

    Article  CAS  Google Scholar 

  46. Steenken S, Jovanovic SV (1997) How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc 119:617–618

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out within the research direction “Flavins – based BioNanoSystems Probed by Luminescence Methods” in the frame of the “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Mariana Voicescu: The Concept, Methodology, Experimental, Analysis, Writing and Revision.

Corresponding author

Correspondence to Mariana Voicescu.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voicescu, M. Preliminary Insights into the Fluorescence and Oxidative Characteristics of Flavin - DNA Systems on PVP - Coated Silver Nanoparticles. J Fluoresc (2024). https://doi.org/10.1007/s10895-023-03549-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03549-w

Keywords

Navigation