Skip to main content
Log in

Theoretical Study on Spectrum and Luminescence Mechanism of Cy5.5 and Cy7.5 Dye Based on Density Functional Theory (DFT)

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Cy5.5 and 7.5 are the most commonly used NIR 2-region fluoresceins, which have good luminescence properties and important biomedical tracer applications. In this paper, their molecular non-covalent interactions, UV-Vis absorption spectra, main bond lengths, electrostatic potential distributions, frontier molecular orbitals (HOMO and LUMO) and energy gaps were calculated by density functional theory (DFT). We found that the differences in the luminescence properties and energy gaps of Cy5.5 and Cy7.5 molecules may be caused by the length of the conjugated chains between the two aromatic rings in the molecule. By calculating the relevant molecular characteristics, this paper can provide ideas and theoretical basis for the relevant modification and application, as well as the development of new fluorescent dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Lee YC et al (2010) Optical properties of fluorescein-labeled organoclay. Photochem Photobiol 86:520–527. https://doi.org/10.1111/j.1751-1097.2009.00701.x

    Article  CAS  PubMed  Google Scholar 

  2. Sam SK, George B, L., N, S. Y., Varghese A (2021) Fluorescein based fluorescence sensors for the selective sensing of various analytes. J Fluoresc 31:1251–1276. https://doi.org/10.1007/s10895-021-02770-9

    Article  CAS  PubMed  Google Scholar 

  3. Hirabayashi K et al (2015) Analysis of chemical equilibrium of silicon-substituted fluorescein and its application to develop a scaffold for red fluorescent probes. Anal Chem 87:9061–9069. https://doi.org/10.1021/acs.analchem.5b02331

    Article  CAS  PubMed  Google Scholar 

  4. Cho HH et al (2020) Development of fluorescein isothiocyanate conjugated gellan gum for application of bioimaging for biomedical application. Int J Biol Macromol 164:2804–2812. https://doi.org/10.1016/j.ijbiomac.2020.08.146

    Article  CAS  PubMed  Google Scholar 

  5. Ding F et al (2021) Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Adv Drug Deliv Rev 173:141–163. https://doi.org/10.1016/j.addr.2021.03.008

    Article  CAS  PubMed  Google Scholar 

  6. Diaz RJ et al (2015) Study of the biodistribution of fluorescein in glioma-infiltrated mouse brain and histopathological correlation of intraoperative findings in high-grade gliomas resected under fluorescein fluorescence guidance. J Neurosurg 122:1360–1369. https://doi.org/10.3171/2015.2.Jns132507

    Article  PubMed  Google Scholar 

  7. Gu H et al (2022) Single-molecule photosensitizers for NIR-II fluorescence and photoacoustic imaging guided precise anticancer phototherapy. Chem Sci 13:9719–9726. https://doi.org/10.1039/d2sc02879d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kazachkina NI et al (2022) MR and fluorescence imaging of gadobutrol-induced optical clearing of red fluorescent protein signal in an in vivo cancer model. NMR Biomed 35:e4708. https://doi.org/10.1002/nbm.4708

    Article  CAS  PubMed  Google Scholar 

  9. Ogasawara H et al (2018) A far-red fluorescent probe based on a phospha-fluorescein scaffold for cytosolic calcium imaging. Chem Commun 54:299–302. https://doi.org/10.1039/c7cc07344e

    Article  CAS  Google Scholar 

  10. Zhang X et al (2009) Dual-color fluorescence imaging in a nude mouse orthotopic glioma model. J Neurosci Methods 181:178–185. https://doi.org/10.1016/j.jneumeth.2009.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen M et al (2019) Erythrocyte-derived vesicles for circulating Tumor cell capture and specific Tumor imaging. Nanoscale 11:12388–12396. https://doi.org/10.1039/c9nr01805k

    Article  CAS  PubMed  Google Scholar 

  12. Wang P et al (2019) Fabrication of Red Blood Cell-based Multimodal Theranostic Probes for Second Near-Infrared window fluorescence imaging-guided Tumor Surgery and photodynamic therapy. Theranostics 9:369–380. https://doi.org/10.7150/thno.29817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Houston JP, Thompson AB, Gurfinkel M, Sevick-Muraca EM (2003) Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging. Photochem Photobiol 77:420–430. https://doi.org/10.1562/0031-8655(2003)077%0420:sadpoc%2.0.co;2

    Article  CAS  PubMed  Google Scholar 

  14. Kowada T, Maeda H, Kikuchi K (2015) BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem Soc Rev 44:4953–4972. https://doi.org/10.1039/c5cs00030k

    Article  CAS  PubMed  Google Scholar 

  15. Zhao X, Zhang F, Lei Z (2022) The pursuit of polymethine fluorophores with NIR-II emission and high brightness for in vivo applications. Chem Sci 13:11280–11293. https://doi.org/10.1039/d2sc03136a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  17. Liu Z et al (2022) 1–8 (2022). https://doi.org/10.1155/2022/4321595

  18. Singh P, Islam SS, Ahmad H, Prabaharan A (2018) Spectroscopic investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO, and molecular docking analysis of N -ethyl- N -nitrosourea, a potential anticancer agent. J Mol Struct 1154:39–50. https://doi.org/10.1016/j.molstruc.2017.10.012

    Article  CAS  Google Scholar 

  19. Celik S, Akyuz S, Ozel AE (2022) Vibrational spectroscopic characterization and structural investigations of Cepharanthine, a natural alkaloid. J Mol Struct 1258. https://doi.org/10.1016/j.molstruc.2022.132693

  20. Celik S, Akyuz S, Ozel AE (2022) Molecular modeling, DFT quantum chemical analysis, and molecular docking on edotecarin, an indolocarbazole anticancer agent. Mol Cryst Liq Cryst 1–23. https://doi.org/10.1080/15421406.2022.208424020

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima MT, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg S, Dapprich (2009) A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09 Revison A.1, Wallingford CT,

  22. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys 38:3098–3100. https://doi.org/10.1103/physreva.38.3098

    Article  CAS  PubMed  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37:785–789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  PubMed  Google Scholar 

  24. Legault CY (2009) CYLVIEW, 1.0b, Université De Sherbrooke, ; http://www.cylview.org

  25. Humphrey W, Dalke A, Schulten K (1996) VMD – Visual.; Molecular Dynamics. J Molec Graphics 14(1):33–38. http://www.ks.uiuc.edu/Research/vmd

    Article  CAS  Google Scholar 

  26. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phy Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  27. Fang R, Zhang Y, Kirillov AM, Yang L (2020) The DFT Quest for possible reaction pathways, Catalytic species, and Regioselectivity in the InCl3-Catalyzed cycloaddition of N-Tosyl formaldimine with olefins or Allenes. J Org Chem 85:3676–3688. https://doi.org/10.1021/acs.joc.9b03309

    Article  CAS  PubMed  Google Scholar 

  28. Fang R, Yang L, Zhou L, Kirillov AM, Yang L (2020) Carbocation versus Carbene Controlled Chemoselectivity: DFT Study on Gold- and silver-catalyzed Alkylation/Cyclopropanation of Indoles with Vinyl Diazoesters. Org Lett 22:4043–4048. https://doi.org/10.1021/acs.orglett.0c01476

    Article  CAS  PubMed  Google Scholar 

  29. Gao CR, Li JW, Zhang J, Sun XL (2020) DFT Study on Mechanisms of the N2O Direct Catalytic Decomposition over Cu-ZSM-5: The Detailed Investigation on NO Formation Mechanism. Catalysts 10 https://doi.org:ARTN 64610.3390/catal10060646

  30. Buyukeksi SI et al (2023) Tetrahydroxyphthalocyanine as a potential nonlinear optical material. J Mol Struct 1271. https://doi.org/10.1016/j.molstruc.2022.134046

  31. Cherif FY, Hadji D, Benhalima N (2023) Molecular structure, Linear, and Nonlinear Optical properties of Piperazine-1,4-Diium Bis 2,4,6-Trinitrophenolate: a theoretical investigation. Phy Chem Res 11:33–48. https://doi.org/10.22036/pcr.2022.330752.2035

    Article  CAS  Google Scholar 

  32. ElGuesmi N et al (2023) Synthesis and spectral properties of novel series of fluorene-based azo dyes containing thiazole scaffold: studying of the solvent and substituent effect on absorption spectra. J Mol Struct 1271. https://doi.org/10.1016/j.molstruc.2022.134002

  33. Raftani M et al (2023) New Organic dyes with Low Bandgap based on Heterocyclic compounds for Dye-sensitized solar cells applications. Biointerface Res APP 13. https://doi.org/10.33263/briac131.054

  34. Surendar P et al (2023) Organic Quasi-liquid Schiff bases from Biomolecules: synthesis, structure and Quantum Mechanical studies. Biointerface Res APP 13. https://doi.org/10.33263/briac132.107132.107

  35. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  36. Johnson ER et al (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Contreras-Garcia J et al (2011) NCIPLOT: a program for plotting Noncovalent Interaction regions. J Chem Theory Comput 7:625–632. https://doi.org/10.1021/ct100641a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China, grant number 81960323.

Author information

Authors and Affiliations

Authors

Contributions

Z. Liu conceived the scientific research project. Z. Liu and X. Meng completed the main content of this study. Z.-Z. Zhang performed the drawing of pictures in this paper. S.-T. Wang and R.-Z. Liu completed data collation and proofreading. Z.-Z. Zhang is responsible for maintaining the computing cluster. Z. Liu and J.-Q. Lei wrote the original manuscript. J.-Q. Lei completed review and proofreading of the manuscript.

Corresponding author

Correspondence to Jun-Qiang Lei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Meng, X., Zhang, Z. et al. Theoretical Study on Spectrum and Luminescence Mechanism of Cy5.5 and Cy7.5 Dye Based on Density Functional Theory (DFT). J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03525-4

Keywords

Navigation