Skip to main content
Log in

Optical Temperature Sensing Based on Linear Change of Luminescence Intensity Ratio in Y2O3: Tm3+, Eu3+ Phosphors

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this work, Y2O3: Tm3+, Eu3+ phosphors were made by homogeneous precipitation with urea as precipitator. The emission spectra varying with temperature of Y2O3: Tm3+, Eu3+ phosphors were measured and analyzed. Analysis show that the luminescence of Eu3+ represents a normal thermal quenching change, while that of Tm3+ exhibits slow thermal enhancement phenomenon. In the temperature range of 303-503 K, the luminescence of Tm3+ showed a trend of first strengthening and then weakening. The reason for this phenomenon of Tm3+ is that there is energy transfer from Eu3+ to Tm3+, and the energy transfer efficiency increases gradually with temperature. Meanwhile, the luminescence of Tm3+ also have thermal quenching effect. Under the combined influence of thermal quenching and energy transfer, the luminescence of Tm3+ first becomes stronger and then then becomes weaker. According to the calculation, the luminescence intensity ratio (LIR) of Tm3+ and Eu3+ conforms to the linear empirical formula with increasing temperature. The relative sensitivity of phosphors decreases with Eu3+ concentration increased, and the maximum Sr reaches 0.460% K−1 (1% Tm3+, 0.3% Eu3+, at 303 K). Moreover, the temperature cycle test present that the LIR of phosphors has good repeatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Materials

Data and materials will be made available on request.

References

  1. Wang Q, Liao M, Lin QM et al (2021) A review on fluorescence intensity ratio thermometer based on rare earth and transition metal ions doped inorganic luminescent materials. J Alloys Compd 850:156744

    Article  CAS  Google Scholar 

  2. Wang XF, Liu Q, Bu YY et al (2015) Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv 5:86219–86236

    Article  CAS  Google Scholar 

  3. Wang X, Li XP, Xu S et al (2021) Temperature-dependent luminescence properties of Dy3+, Tm3+ single-/co-doped YNbO4 phosphors. Optik 238:166524

    Article  CAS  Google Scholar 

  4. Ranjith P, Sreevalsa S, Tyagi J et al (2020) Elucidating the structure and optimising the photoluminescence properties of Sr2Al3O6F: Eu3+ oxyfluorides for cool white LEDs. J Alloy Compd 826:154015

    Article  CAS  Google Scholar 

  5. Yang K, Shen Y, He K et al (2021) An optical fiber temperature sensor based on fluorescence intensity ratio used for real-time monitoring of chemical reactions. Ceram Int 47:33537–33543

    Article  CAS  Google Scholar 

  6. Pudovkin MS, Ginkel AK, Lukinova EV (2021) Temperature sensitivity of Nd3+, Yb3+:YF3 ratiometric luminescent thermometers at different Yb3+ concentration. Opt Mater 119:111328

    Article  CAS  Google Scholar 

  7. Laia AS, Hora DA, Dos SMV et al (2020) Comparing the performance of Nd3+-doped LiBaPO4 phosphors as optical temperature sensors within the first biological window exploiting luminescence intensity ratio and bandwidth methods. J Lumin 227:117524

    Article  CAS  Google Scholar 

  8. Piao RQ, Liu DY, Yuan N et al (2018) Multiple ratiometric thermometry using electronic transitions between Stark sublevels of Er3+ for reliable temperature detection. J Alloy Compd 756:201–211

    Article  Google Scholar 

  9. Pudovkin MS, Kuznetsov SV, Proydakova VY et al (2020) Luminescent thermometry based on Ba4Y3F17:Pr3+ and Ba4Y3F17:Pr3+, Yb3+ nanoparticles. Ceram Int 46:11658–11666

    Article  CAS  Google Scholar 

  10. Miroslav DD (2020) Trends in luminescence thermometry. J Appl Phys 128:040902

    Article  Google Scholar 

  11. Wang Q, Liao M, Lin QM et al (2021) A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials. J Alloy Compd 850:156744

    Article  CAS  Google Scholar 

  12. Prashant MK, Avinash RK, Sahare PD et al (2022) Structural, compositional and luminescence studies of Y2O3:Eu3+ nanophosphor synthesized by sol-gel method. J Alloy Compd 928:167106

    Article  Google Scholar 

  13. Julian P, Rajesh K, Christoph G et al (2022) Simple one pot synthesis of luminescent europium doped yttrium oxide Y2O3: Eu nanodiscs for phosphor converted warm white LEDs. Nanoscale Adv 4:858–864

    Article  Google Scholar 

  14. Ma WJ, Li Z, Lu P et al (2022) Multisignal optical temperature-sensing properties of Eu3+-doped NaYF4 nanoparticles. Luminescence 37:2098–2104

    Article  CAS  PubMed  Google Scholar 

  15. Wang JY, Liu XX, Liu Y et al (2018) Luminescence and energy transfer properties of Gd2P4O13:Tm3+, Dy3+ phosphor with UV light excitation. Optik 175:304–311

    Article  CAS  Google Scholar 

  16. Wang T, Wang SY, Zhang HB et al (2020) Preparation, luminescence properties and energy transfer of Tm3+ and Tm3+-Eu3+ doped glass-ceramics containing NaY(MoO4)2. J Solid State Chem 284:121184

    Article  CAS  Google Scholar 

  17. Ma H, Wang XD, Chen FF et al (2021) Luminescence properties and energy transfer mechanism of Eu3+ and Tm3+ Co-doped AlN thin films. J Lumin 236:118082

    Article  CAS  Google Scholar 

  18. Zhou SS, Li XM, Zhang SB (2021) Design of opposite thermal behaviors in Tm3+/Eu3+ co-doped YVO4 for high-sensitivity optical thermometry. Opt Lett 46:1301–1304

    Article  PubMed  Google Scholar 

  19. Devaraju MK, Yin S, Sato T (2009) Solvothermal synthesis and characterization of blue, green and red emitting Y2O3:Ln3+ (Ln3+= Tm3+, Tb3+ and Eu3+) nanocrystals. MSE 1:012011

    Google Scholar 

  20. Yadav RS, Rai SB (2019) Effect of annealing and excitation wavelength on the downconversion photoluminescence of Sm3+ doped Y2O3 nano-crystalline phosphor. Opt Laser Technol 111:169–175

    Article  CAS  Google Scholar 

  21. Delice S, Isik M, Gasanly NM (2019) Low temperature thermoluminescence behaviour of Y2O3 nanoparticles. J Rare Earths 37:19–23

    Article  CAS  Google Scholar 

  22. Shivaramu NJ, Lakshminarasappa BN, Coetsee E, Swart SHC (2021) Thermoluminescence behavior of gamma irradiated Y2O3: Sm3+ nanophosphor. J Lumin 232:117855

    Article  CAS  Google Scholar 

  23. Piramidowicz R, Jusza A, Lipińska L et al (2020) UV-blue luminescent properties of Tm3+: Y2O3 nanocrystals and PMMA-based composites. J Lumin 226:117458

    Article  CAS  Google Scholar 

  24. Zhao QR, Qian BF, Wang YL et al (2022) Facile synthesis of CaO:Eu3+ and comparative study on the luminescence properties of CaO: Eu3+ and CaCO3: Eu3+. J Lumin 241:118491

    Article  CAS  Google Scholar 

  25. Janaína Gomes AO (2006) Nanocrystalline RE2O3:Tm3+ (RE: Gd3+, Y3+) Blue Phosphors Synthesized via the Combustion Method. J Fluoresc 16:411–421

    Article  PubMed  Google Scholar 

  26. Lovisa LX, Silva JMPD, Santiago AAG et al (2022) Red-emitting CaWO4:Eu3+, Tm3+ phosphor for solid-state lighting: Luminescent properties and morphology evolution. J Rare Earth 40:226–233

    Article  CAS  Google Scholar 

  27. Huang XM, He C, Zhu X et al (2021) Synthesis and characterization of Eu3+-doped RbCaLa(VO4)2 phosphors and influence of temperature on fluorescence properties. Ceram Int 47:32130–32137

    Article  CAS  Google Scholar 

  28. Zhang J, Pei YQ, Ma CL, Zhang YN (2022) The direct identification of quantum cutting in Tm3+ ions and energy transfer in the Tm3+/Yb3+ system based on a Ba2Gd2Si4O13 oxide host†. Inorg Chem Front 9:719–728

    Article  CAS  Google Scholar 

  29. Li X, Yang C, Liu QS et al (2020) Enhancement of luminescence properties of SrAl2Si2O8: Eu3+ red phosphor. Ceram Int 46:17376–17382

    Article  CAS  Google Scholar 

  30. Liu YJ, Wang RG, Yang QH et al (2022) The tri-emitting phosphate phosphors SrIn2(P2O7)2: Tm, Dy, Eu for ratiometric optical thermometer. J Am Ceram Soc 105:6184–6195

    Article  CAS  Google Scholar 

  31. Lisiecki R, Romanowski WR, Lukasiewicz T (2006) Relaxation of excited states of Tm3+ and Tm3+-Eu3+ energy transfer in YVO4 crystal. Appl Phys B 83:255–259

    Article  CAS  Google Scholar 

  32. Wang BX, Ren Q, Hai O, Wu XL (2017) Luminescence properties and energy transfer in Tb3+ and Eu3+ co-doped Ba2P2O7 phosphors. RSC Adv 7:15222–15227

    Article  CAS  Google Scholar 

  33. Zhang XG, Zhang JL, Chen YB, Gong ML (2016) Energy transfer and multicolor tunable emission in single-phase Tb3+, Eu3+ co-doped Sr3La(PO4)3 phosphors. Ceram Int 42:13919–13924

    Article  CAS  Google Scholar 

  34. Liao JS, Kong LY, Wang MH et al (2019) Tunable upconversion luminescence and optical temperature sensing based on non-thermal coupled levels of Lu3NbO7:Yb3+/Ho3+ phosphors. Opt Mater 98:109452

    Article  CAS  Google Scholar 

  35. Li L, Tang XH, Wu ZJ et al (2019) Simultaneously tuning emission color and realizing optical thermometry via efficient Tb3+/Eu3+ energy transfer in whitlockite-type phosphate multifunctional phosphors. J Alloy Compd 780:266–275

    Article  CAS  Google Scholar 

  36. Wang CL, Jin YH, Zhang RT et al (2022) A review and outlook of ratiometric optical thermometer based on thermally coupled levels and non-thermally coupled levels. J Alloy Compd 894:162494

    Article  CAS  Google Scholar 

  37. Gao Y, Huang F, Lin H et al (2016) A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states. Adv Funct Mater 26:3139–3145

    Article  CAS  Google Scholar 

  38. Yang YM, Lin L, Lu P et al (2021) A linear calibrated high temperature sensor based on up-conversion fluorescence of Y2Mo3O12:Er3+, Yb3+ enhanced by negative thermal expansion. J Lumin 240:118410

    Article  CAS  Google Scholar 

  39. Zhu Y, Meng QY, Sun WJ, Lü SC (2020) NaLa(MoO4)2:Sm3+, Tb3+ phosphor: Optical temperature sensing material with a wide change range of luminescence color. J Lumin 218:116854

    Article  CAS  Google Scholar 

  40. Huang F, Chen DQ (2017) Synthesis of Mn2+: Zn2SiO4-Eu3+: Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions. J Mater Chem C 5:5176–5182

    Article  CAS  Google Scholar 

  41. Zhang J, Jiang XM, Hua ZH (2018) Investigation on Upconversion Luminescence and Optical Temperature Sensing Behavior for Ba2Gd2Si4O13:Yb3+-Er3+/Ho3+/Tm3+ Phosphors. Ind Eng Chem Res 57:7507–7515

    Article  CAS  Google Scholar 

  42. Hu FF, Zhao ZM, Chi FF et al (2017) Structural characterization and temperature-dependent luminescence of CaF2:Tb3+/Eu3+ glass ceramics. J Rare Earths 35:536–541

    Article  CAS  Google Scholar 

  43. Zhang J, Yu HL, Hua ZH et al (2023) Optical temperature-sensing properties in La1.55SiO4.33:Yb3+,Ho3+ phosphors affected by Ho3+-doping concentration. J Lumin 261:19940

    Article  Google Scholar 

  44. Mo FW, Zhang XG, Sun ZS et al (2019) Luminescence of K2BaCa(PO4)2: Ce3+, Tb3+ dual-emitting phosphor and its application as ratiometric optical thermometer. Ceram Int 45:12319–12324

    Article  CAS  Google Scholar 

  45. Laia AS, Maciel GS, Rodrigues JJ Jr et al (2022) Lithium-boron-aluminum glasses and glass-ceramics doped with Eu3+: A potential optical thermometer for operation over a wide range of temperatures with uniform sensitivity. J Alloy Compd 907:164402

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Heilongjiang Province Natural Science Foundation of China (Grant No. LH2022A027).

Author information

Authors and Affiliations

Authors

Contributions

Huixin Liu: Experiment, Data curation, Methodology, Writing—original draft. Qingyu Meng: Idea, Resources, Supervision, Writing—review and editing. Changwen Wang: Validation, Investigation, Resources.

Corresponding author

Correspondence to Qingyu Meng.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Meng, Q. & Wang, C. Optical Temperature Sensing Based on Linear Change of Luminescence Intensity Ratio in Y2O3: Tm3+, Eu3+ Phosphors. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03516-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03516-5

Keywords

Navigation