Skip to main content
Log in

Fast, Selective and Sensitive Fluorescence Detection of Levofloxacin, Fe3+ and Cu2+ Ions in 100% Aqueous Solution Via Their Reciprocal Recognition

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The fluorescence detection of ions and pharmaceutical effluents by using organic chemosensors is a valuable surrogate to the currently existing expensive analytical methods. In this regard, the design of multi-functional chemosensors to recognize desirable guests is of utmost importance. In this study, we first show that levofloxacin (LVO) is able to use as a fluorescent chemosensor for the detection of biologically important Cu2+ (turn-off) and Fe3+ (turn-on) ions via independent signal outputs in 100% aqueous buffer solutions. Next, using the reciprocal recognition of LVO and Fe3+ provides a unique emission pattern for the detection of LVO. This approach exhibited a high specificity to LVO among various pharmaceutical samples, namely acetaminophen (AC), azithromycin (AZ), gemifloxacin (GEM) and ciprofloxacin (CIP) and also showed great anti-interference property in urine. The attractive features of this sensing system are availability, easy-to-use, high sensitivity (limit of detection = 18 nM for Cu2+, 22 nM for Fe3+ and 0.12 nM for LVO), rapid response (5 s) with an excellent selectivity.

Graphical Abstract

Levofloxacin (LVO) is able to use as a fluorescent chemosensor for the detection of Cu2+ (turn-off) and Fe3+ (turn-on) ions via independent signal outputs. Moreover, using the reciprocal recognition of LVO and Fe3+ a unique emission pattern for the detection of LVO was achieved which is applicable for biological samples. The attractive features of this sensing system are availability, easy-to-use, high sensitivity, rapid response (5 s) with an excellent selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

References

  1. Liu J, Lu YA (2007) A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. J Am Chem Soc 129:9838–9839. https://doi.org/10.1021/ja0717358

    Article  CAS  PubMed  Google Scholar 

  2. Ho J, Chang HC, Su WT (2012) DOPA-Mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Anal Chem 84:3246–3253. https://doi.org/10.1021/ac203362g

    Article  CAS  PubMed  Google Scholar 

  3. Lin Y, Liang P, Guo L (2005) Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta 68:25–30. https://doi.org/10.1016/j.talanta.2005.04.035

    Article  CAS  Google Scholar 

  4. Lin TW, Huang SD (2001) Direct and simultaneous determination of copper, chromium, aluminum, and manganese in urine with a multielement graphite furnace atomic absorption spectrometer. Anal Chem 73:4319–4325. https://doi.org/10.1021/ac010319h

    Article  CAS  PubMed  Google Scholar 

  5. Becker JS, Zoriy MV, Pickhardt C, Palomer GN, Zilles K (2005) Imaging of copper, zinc, and other elements in thin section of human brain samples (Hippocampus) by laser ablation inductively coupled plasma Mass Spectrometry. Anal Chem 77:3208–3216. https://doi.org/10.1021/ac040184q

    Article  CAS  PubMed  Google Scholar 

  6. Chowdhury S, Rooj B, Dutta A, Mandal U (2018) Review on recent advances in metal ions sensing using different fluorescent probes. J Fluoresc 28:999–1021. https://doi.org/10.1007/s10895-018-2263-y

    Article  CAS  PubMed  Google Scholar 

  7. Yang Y, Zhao Q, Feng W, Li F (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113:192–270. https://doi.org/10.1021/cr2004103

    Article  CAS  PubMed  Google Scholar 

  8. Wu J, Liu W, Ge J, Zhang H, Wang P (2011) New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40:3483–3495. https://doi.org/10.1039/C0CS00224K

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J, Zhu M, Jiang D, Zhang H, Li L, Zhang G, Wang Y, Feng C, Zhao H (2019) A FRET-based colorimetric and ratiometric fluorescent probe for the detection of Cu2+ with a new trimethylindolin fluorophore. New J Chem 43:10176–10182. https://doi.org/10.1039/c9nj02380a

    Article  CAS  Google Scholar 

  10. Madhu P, Sivakumar P, Sribalan R, Arumugam SM (2022) Highly selective and sensitive ‘on–off’ fluorescent chemosensor for Fe3+ ions crafted by benzofuran moiety in both experimental and theoretical methods. Luminescence 37:1064–1072. https://doi.org/10.1002/bio.4258

    Article  CAS  PubMed  Google Scholar 

  11. Sen S, Sarkar S, Chattopadhyay B, Moirangthem A, Basu A, Dhara K, Chattopadhyay P (2012) A ratiometric fluorescent chemosensor for iron: discrimination of Fe2+ and Fe3+ and living cell application. Analyst 137:3335–3342. https://doi.org/10.1039/c2an35258c

    Article  CAS  PubMed  Google Scholar 

  12. Yang Z, She M, Yin B, Cui J, Zhang Y, Sun W, Li J, Shi Z (2012) Three rhodamine-based “Off–On” chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells. J Org Chem 77:1143–1147. https://doi.org/10.1021/jo202056t

    Article  CAS  PubMed  Google Scholar 

  13. Sahoo SK, Crisponi G (2019) Recent advances on Iron(III) selective fluorescent probes with possible applications in bioimaging. Molecules 24:3267. https://doi.org/10.3390/molecules24183267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu H, Ding H, Li G, Fan H, Fan C, Liu G, Pu S (2017) A highly selective fluorescent chemosensor for Fe3+ based on a new diarylethene with a rhodamine 6G unit. RSC Adv 7:29827–29834. https://doi.org/10.1039/c7ra04728b

    Article  CAS  Google Scholar 

  15. Sonawane M, Tayade K, Sahoo S, Sawant C, Kuwar A (2016) A new lawsone azo-dye for optical sensing of Fe3+ and Cu2+ and their DFT study. J Coord Chem 69:2785–2792. https://doi.org/10.1080/00958972.2016.1210801

    Article  CAS  Google Scholar 

  16. Jo TG, Jung JM, Han J, Lim MH, Kim C (2017) A single fluorescent chemosensor for multiple targets of Cu2+, Fe2+/3+ and Al3+ in living cells and a near-perfect aqueous solution. RSC Adv 7:28723–28732. https://doi.org/10.1039/c7ra05565

    Article  CAS  Google Scholar 

  17. Lal S, Kumar S, Hooda S, Kumar P (2018) A highly selective sensor for Fe3+ ions in aqueous medium: Spectroscopic, computational and cell imaging studies. J Photochem Photobiol A Chem 364:811–818. https://doi.org/10.1016/j.jphotochem.2018.07.021

    Article  CAS  Google Scholar 

  18. Shyamsivappan S, Saravanan A, Vandana N, Suresh T, Suresh S, Nandhakumar R, Mohan SS (2020) Novel quinoline-based thiazole derivatives for selective detection of Fe3+, Fe2+ and Cu2+ ions. ACS Omega 5:27245–27253. https://doi.org/10.1021/acsomega.0c03445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma Y, Leng T, Qu Y, Wang C, Shen Y, Zhu W (2017) A dual chemosensor Fe3+ and Cu2+ based on π-extend tetrathiafulvalene derivative. Tetrahedron 73:14–20. https://doi.org/10.1016/j.tet.2016.11.033

    Article  CAS  Google Scholar 

  20. Zhang B, Liu H, Wu F, Hao G, Chen Y, Tan C, Tan Y, Jiang Y (2017) A dual-response quinoline-based fluorescent sensor for the detection of copper (II) and Iron(III) ions in aqueous medium. Sens Actuators B Chem 243:765–774. https://doi.org/10.1016/j.snb.2016.12.067

    Article  CAS  Google Scholar 

  21. Wang Y, Wang C, Xue S, Liang Q, Li Z, Xu S (2016) Highly selective and sensitive colorimetric and fluorescent chemosensor of Fe3+ and Cu2+ based on 2,3,3-trimethylnaphto[1,2-d] squaraine. RSC Adv 6:6540–6550. https://doi.org/10.1039/c5ra22530b

    Article  CAS  Google Scholar 

  22. Sikdar A, Panja SS, Biswas P, Roy S (2012) A rhodamine-based dual Chemosensor for Cu(II) and Fe(III). J Fluoresc 22:443–450. https://doi.org/10.1007/s10895-011-0977-1

    Article  CAS  PubMed  Google Scholar 

  23. He W, Liu Z (2016) A fluorescent sensor for Cu2+ and Fe3+ based on multiple mechanisms. RSC Adv 6:59073–59080. https://doi.org/10.1039/c6ra09535f

    Article  CAS  Google Scholar 

  24. Liang Y, Wang R, Liu G, Pu S (2019) Bifunctional Cu2+/Fe3+ probe with Independent Signal Outputs based on a Photochromic Diarylethene with a Dansylhydrazine Unit. ACS Omega 4:6597–6606. https://doi.org/10.1021/acsomega.8b03143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Atarashi S, Yokohama S, Yamazaki K, Sakano K, Imamura M (1987) Synthesis and antibacterial activities of optically active ofloxacin and its fluoromethyl derivative. Chem Pharm Bull 35:1896–1902. https://doi.org/10.1248/cpb.35.1896

    Article  CAS  Google Scholar 

  26. Edlund C, Sjostedt S, Nord CE (1997) Comparative effects of levofloxacin and ofloxacin on the normal oral and intestinal microflora. Scand J Infect Dis 29:383–386. https://doi.org/10.3109/00365549709011835

    Article  CAS  PubMed  Google Scholar 

  27. Speltini A, Sturini M, Maraschi F, Profumo A, Albini A (2011) Analytical methods for the determination of fluoroquinolones in solid environmental matrices. TrAC – Trends Anal Chem 30:1337–1350. https://doi.org/10.1016/j.trac.2011.04.011

    Article  CAS  Google Scholar 

  28. McGregor JC, Allen GP, Bearden DT (2008) Levofloxacin in the treatment of complicated urinary tract infections and acute pyelonephritis. Ther Clin Risk Manag 4:843–853. https://doi.org/10.2147/tcrm.s3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu S, Huang J, Chen Z, Chen N, Pang F, Wang T, Hu L (2015) Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe. J Raman Spectrosc 46:197–201. https://doi.org/10.1002/jrs.4629

    Article  CAS  Google Scholar 

  30. Faria AF, de Souza MV, de Almeida MV, de Oliveira MA (2006) Simultaneous separation of five fluoroquinolone antibiotics by capillary zone electrophoresis. Anal Chim Acta 579:185–192. https://doi.org/10.1016/j.aca.2006.07.037

    Article  CAS  PubMed  Google Scholar 

  31. Rodríguez E, Navarro-Villoslada F, Benito-Pena E, Marazuela MD, Moreno-Bondi MC (2011) Multiresidue determination of ultratrace levels of fluoroquinolone antimicrobials in drinking and aquaculture water samples by automated online molecularly imprinted. Anal Chem 83:2046–2055. https://doi.org/10.1021/ac102839n

    Article  CAS  PubMed  Google Scholar 

  32. Ulu ST (2009) Spectrochim. Rapid and sensitive spectrofluorimetric determination of enrofloxacin, levofloxacin and ofloxacin with 2, 3, 5, 6-tetrachloro-p-benzoquinone. Spectrochim Acta A Mol Biomol Spectrosc 72:1038–1042. https://doi.org/10.1016/j.saa.2008.12.046

    Article  CAS  PubMed  Google Scholar 

  33. Koçak ÇC, Aslışen B, Karabiberoğlu Ş, Özdokur KV, Aslan A, Koçak S (2022) Electrochemical determination of Levofloxacin using poly (Pyrogallol Red) modified glassy Carbon Electrode. ChemistrySelect 7:e202201864. https://doi.org/10.1002/slct.202201864

    Article  CAS  Google Scholar 

  34. Liu C, Xie D, Liu P, Xie S, Wang S, Cheng F, Zhang M, Wang L (2019) Voltammetric determination of levofloxacin using silver nanoparticles deposited on a thin nickel oxide porous film. Microchim Acta 186:21. https://doi.org/10.1007/s00604-018-3146-2

    Article  CAS  Google Scholar 

  35. Yi W, Han C, Li Z, Guo Z, Liu M, Dong C (2021) A strategy of electrochemical simultaneous detection of acetaminophen and levofloxacin in water based on g-C3N4 nanosheet-doped graphene oxide. Environ Sci: Nano 8:258–268. https://doi.org/10.1039/d0en00858c

    Article  CAS  Google Scholar 

  36. Fekry AM (2022) An innovative simple Electrochemical Levofloxacin Sensor assembled from Carbon Paste enhanced with Nano-Sized Fumed silica. Biosensors 12:906. https://doi.org/10.3390/bios12100906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han L, Zhao YF, Chang C, Li F (2018) A novel electrochemical sensor based on poly(p-aminobenzene sulfonic acid)-reduced graphene oxide composite film for the sensitive and selective detection of levofloxacin in human urine. J Electroanal Chem 817:141–148. https://doi.org/10.1016/j.jelechem.2018.04.008

    Article  CAS  Google Scholar 

  38. Zhao J, Liu J, Pan P, Li T, Yang Z, Wei J, Li P, Liu G, Shen H, Zhang X (2022) Electrochemical determination of levofloxacin with a Cu–metal–organic framework derivative. J Mater Sci: Mater Electron 33:9941–9950. https://doi.org/10.1007/s10854-022-07985-5

    Article  CAS  Google Scholar 

  39. Koçak ÇC (2019) Poly(taurine-glutathione)/carbon nanotube modified glassy carbon electrode as a new levofloxacin sensor. Electroanalysis 31:1535–1544. https://doi.org/10.1002/elan.201900096

    Article  CAS  Google Scholar 

  40. Bhimaraya K, Manjunatha JG, Moulya KP, Tighezza AM, Albaqami MD, Sillanpää M (2023) Detection of levofloxacin using a simple and green electrochemically polymerized glycine layered carbon paste electrode. Chemosensors 11:191. https://doi.org/10.3390/chemosensors11030191

    Article  CAS  Google Scholar 

  41. Sharma TSK, Hwa KY (2021) Facile synthesis of Ag/AgVO3/N-rGO hybrid nanocomposites for electrochemical detection of levofloxacin for complex biological samples using screen-printed. Inorg Chem 60:6585–6599. https://doi.org/10.1021/acs.inorgchem.1c003899

    Article  CAS  PubMed  Google Scholar 

  42. Zhang XP, Fu L, Cui GH (2022) Two zn(II)-based coordination polymers as dual-responsive luminescent sensors for the detection of Cr2O72- ions, levofloxacin/sulfamethoxazole. Inorg Chem Commun 143:109761. https://doi.org/10.1016/j.inoche.2022.109761

    Article  CAS  Google Scholar 

  43. Wang XW, Su YQ, Blatov VA, Cui GH (2023) Three zn(II) luminescent coordination polymers as sensors for the sensing of levofloxacin and benzaldehyde. J Mol Struct 1272:134239. https://doi.org/10.1016/j.molstruc.2022.134239

    Article  CAS  Google Scholar 

  44. Wen MY, Liu C, Rui YL, Fu L, Dong GY (2022) Two new cd(II) MOFs as signal magnifiers for fluorescence detection of levofloxacin. J Mol Struct 1267:133560. https://doi.org/10.1016/j.molstruc.2022.133560

    Article  CAS  Google Scholar 

  45. Su YQ, Fu L, Cui GH (2021) Two chemically robust cd(II)-frameworks for efficient sensing of levofloxacin, benzaldehyde, and Fe3 + ions. Dalton Trans 50:15743–15753. https://doi.org/10.1039/d1dt03205d

    Article  CAS  PubMed  Google Scholar 

  46. Wen MY, Ren L, Cui GH (2021) Two Co(II) complexes containing pyridylbenzimidazole ligands as chemosensors for the sensing of levofloxacin, acetylacetone, and Ni2 + with high selectivity and sensitivity. CrystEngComm 23:8563–8571. https://doi.org/10.1039/d1ce01271a

    Article  CAS  Google Scholar 

  47. Liu HF, Tao Y, Qin XH, Chen C, Huang FP, Zhang XQ, Bian HD (2022) Three-fold interpenetrated metal–organic framework as a multifunctional fluorescent probe for detecting 2,4,6-trinitrophenol, levofloxacin, and L-cystine. CrystEngComm 24:1622–1629. https://doi.org/10.1039/d1ce01590g

    Article  CAS  Google Scholar 

  48. Lotfi Zadeh Zhad HR, Lai RY (2017) Iron(III)-mediated Electrochemical Detection of Levofloxacin in Complex Biological samples. Electroanalysis 29:2672–2677. https://doi.org/10.1002/elan.201700428

    Article  CAS  Google Scholar 

  49. Galani A, Efthimiadou EK, Mitrikas G, Sanakis Y, Psycharis V, Raptopoulou C, Kordas G, Karaliota A (2014) Synthesis, crystal structure and characterization of three novel copper complexes of Levofloxacin. Study of their DNA binding properties and biological activities. Inorg Chim Acta 423:207–218. https://doi.org/10.1016/j.ica.2014.08.005

    Article  CAS  Google Scholar 

  50. Darabi HR, Nazarian R, Aghapoor K, Alizadeh S, Ebadinia L (2021) Highly selective and sensitive colorimetric and fluorescent Chemosensors for Rapid Detection of Cyanide Anions in Aqueous Medium: investigation on Supramolecular Recognition of tweezer–shaped salophenes. J Fluoresc 31:1085–1097. https://doi.org/10.1007/s10895-021-02738-9

    Article  CAS  PubMed  Google Scholar 

  51. Nazarian R, Darabi HR, Aghapoor K, Firouzi R, Sayahi H (2020) A highly sensitive “ON–OFF” optical sensor for the selective detection of cyanide ions in 100% aqueous solutions based on hydrogen bonding and water assisted aggregation induced emission. Chem Commun 56:8992–8995. https://doi.org/10.1039/d0cc02510k

    Article  CAS  Google Scholar 

  52. Kargar M, Darabi HR, Sharifi A, Mostashari A (2020) A new chromogenic and fluorescent chemosensor based on a naphthol–bisthiazolopyridine hybrid: a fast response and selective detection of multiple targets, silver, cyanide, sulfide, and hydrogen sulfide ions and gaseous H2S. Analyst 145:2319–2330. https://doi.org/10.1039/c9an02265a

    Article  CAS  PubMed  Google Scholar 

  53. Rastgar S, Darabi HR, Sobhani L, Aghapoor K, Firouzi R, Mohsenzadeh F, Yaghobi H, Jafary F (2020) Enhanced activity in the Tosylation of Tolanophanes via Supramolecular HgCl2 Recognition. Aust J Chem 73:608–613. https://doi.org/10.1071/CH18376

    Article  CAS  Google Scholar 

  54. Ebadinia L, Darabi HR, Ramazani A (2020) Optical detection of cyanide by palladium(II)-dithiazolopyridine probe at the parts per billion level. Phosphorus Sulfur 195:620–627. https://doi.org/10.1080/10426507.2019.1702987

    Article  CAS  Google Scholar 

  55. Assadollahnejad N, Kargar M, Darabi HR, Abouali N, Jamshidi S, Sharifi A, Aghapoor K, Sayahi H (2019) A new ratiometric, colorimetric and ‘turn-on” fluorescent chemosensor for the detection of cyanide ions based on a phenol–bisthiazolopyridine hybrid. New J Chem 43:13001–13009. https://doi.org/10.1039/c9nj02863c

    Article  CAS  Google Scholar 

  56. Darabi HR, Sobhani L, Rastgar S, Aghapoor K, Amini SK, Zadmard R, Jadidi K, Notash B (2019) Synthesis, characterization and selective Cu2+ recognition of novel E– and Z–stilbenophanes. Supramol Chem 31:45–51. https://doi.org/10.1080/10610278.2018.1528010

    Article  CAS  Google Scholar 

  57. Darabi HR, Khatamifar E, Aghapoor K, Sayahi H, Firouzi R (2017) Practical and theoretical aspects of Wacker oxidation of tolanophanes: synthesis and characterization of novel diketonic cyclophanes. Appl Organomet Chem 31:e3812. https://doi.org/10.1002/aoc.3812

    Article  CAS  Google Scholar 

  58. Darabi HR, Kargar M, Hajipoor R, Abouali N, Aghapoor K, Jadidi K, Notash B, Sayahi H (2016) Synthesis and structure of 2,6-bis(2-methoxyphenyl)dithiazolo[4,5-b:5′,4′-e]pyridine) as a novel fluorescent sensor: different recognition of transition metal ions and proton. Tetrahedron Lett 57:256–259. https://doi.org/10.1016/j.tetlet.2015.11.055

    Article  CAS  Google Scholar 

  59. Darabi HR, Mirzakhani M, Aghapoor K (2015) The supramolecular effect of stilbenophanes on the Wacker oxidation progress: a structure-activity relationship study. J Organomet Chem 786:10–13. https://doi.org/10.1016/j.jorganchem.2015.02.047

    Article  CAS  Google Scholar 

  60. Darabi HR, Mirzakhani M, Aghapoor K, Jadidi K, Faraji L, Sakhaee N (2013) A structure-activity relationship study on the Wacker oxidation of stilbenes at ambient condition. J Organomet Chem 740:131–134. https://doi.org/10.1016/j.jorganchem.2013.05.008

    Article  CAS  Google Scholar 

  61. Darabi HR, Darestani Farahani A, Karouei MH, Aghapoor K, Firouzi R, Herges R, Mohebbi AR, Naether C (2012) Cup-shaped E,E-Stilbenophane: synthesis, crystal structure and supramolecular chemistry. Supramol Chem 24:653–657. https://doi.org/10.1080/10610278.2012.678359

    Article  CAS  Google Scholar 

  62. Darabi HR, Azimzadeh M, Motamedi A, Firouzi R, Herges R, Mohebbi AR, Nasseri S, Naether C (2009) Synthesis, crystal structure and silver complexation of a novel saddle-shaped stilbenophane: NMR and theoretical study on the complex. Supramol Chem 21:632–637. https://doi.org/10.1080/10610270802657650

    Article  CAS  Google Scholar 

  63. Mao S, Chen K, Yan G, Huang D (2020) β-Keto Acids in Organic Synthesis. Eur J Org Chem 2020:525–538. https://doi.org/10.1002/ejoc.201901605

    Article  CAS  Google Scholar 

  64. Ignatchenko AV, Springer ME, Walker JD, Brennessel WW (2021) Alkyl substituted Beta-keto acids: molecular structure and decarboxylation kinetics in aqueous solution and on the Surface of Metal Oxides. J Phys Chem C 125:3368–3384. https://doi.org/10.1021/acs.jpcc.0c10797

    Article  CAS  Google Scholar 

  65. Ignatchenko AV, Cohen AJ (2018) Reversibility of the catalytic ketonization of carboxylic acids and of beta-keto acids decarboxylation. Catal Commun 111:104–107. https://doi.org/10.1016/j.catcom.2018.04.002

    Article  CAS  Google Scholar 

  66. Snider BB, Patricia JJ, Kates SA (1988) Mechanism of manganese(III)-based oxidation of β-Keto esters. J Org Chem 53:2137–2143. https://doi.org/10.1021/jo00245a001

    Article  CAS  Google Scholar 

  67. Tsuda T, Okada M, Nishi S, Saegusa T (1986) Palladium-catalyzed decarboxylative allylic alkylation of allylic acetates with. β-Keto acids. J Org Chem 51:421–426. https://doi.org/10.1021/jo00354a001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Ministry of Science, Research and Technology of Iran is acknowledged for partial financial assistance of this work.

Funding

There was no external funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

Ramo Nazarian: Investigation- Formal analysis - Review & editing. Hossein Reza Darabi: Project administration, Conceptualization, Writing – original draft, Writing – review & editing. Kioumars Aghapoor: Methodology, Investigation. Farshid Mohsenzadeh: Conceptualization, Writing – review & editing. Hani Sayahi: Investigation, Review & editing. Leila Atasbili: Synthesis, Formal analysis. All authors read and approved the final manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hossein Reza Darabi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1464 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarian, R., Darabi, H.R., Aghapoor, K. et al. Fast, Selective and Sensitive Fluorescence Detection of Levofloxacin, Fe3+ and Cu2+ Ions in 100% Aqueous Solution Via Their Reciprocal Recognition. J Fluoresc 34, 1279–1290 (2024). https://doi.org/10.1007/s10895-023-03362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03362-5

Keywords

Navigation