Skip to main content

Advertisement

Log in

COVID-19 Virus Structural Details: Optical and Electrochemical Detection

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The increasing viral species have ruined people's health and the world's economy. Therefore, it is urgent to design bio-responsive materials to provide a vast platform for detecting a different family's passive or active virus. One can design a reactive functional unit for that moiety based on the particular bio-active moieties in viruses. Nanomaterials as optical and electrochemical biosensors have enabled better tools and devices to develop rapid virus detection. Various material science platforms are available for real-time monitoring and detecting COVID-19 and other viral loads. In this review, we discuss the recent advances of nanomaterials in developing the tools for optical and electrochemical sensing COVID-19. In addition, nanomaterials used to detect other human viruses have been studied, providing insights for developing COVID-19 sensing materials. The basic strategies for nanomaterials develop as virus sensors, fabrications, and detection performances are studied. Moreover, the new methods to enhance the virus sensing properties are discussed to provide a gateway for virus detection in variant forms. The study will provide systematic information and working of virus sensors. In addition, the deep discussion of structural properties and signal changes will offer a new gate for researchers to develop new virus sensors for clinical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

© 2018, American Chemical Society

Fig. 4

© 2017, Springer Nature

Fig. 5
Fig. 6

© 2022 The Authors. Published by American Chemical Society

Fig. 7

© 2020 Elsevier Inc

Fig. 8

© 2020 American Chemical Society

Fig. 9

© 2021 American Chemical Society

Fig. 10

© 2020 Elsevier B.V. All rights reserved

Fig. 11

© 2021, American Chemical Society

Fig. 12

© 2019 American Chemical Society

Fig. 13

Similar content being viewed by others

Data Availability

This is a review article; therefore, this does not contain any data. Permission has been taken to incorporate figures from published articles.

References

  1. Molloy EJ, Bearer CB (2021) Pediatric Research and COVID-19: the changed landscape. Pediatr Res 2021:1–2. https://doi.org/10.1038/s41390-021-01857-0

    Article  CAS  Google Scholar 

  2. Jia P, Peng Jia C (2021) A changed research landscape of youth’s obesogenic behaviours and environments in the post-COVID-19 era. Obes Rev 22:e13162. https://doi.org/10.1111/OBR.13162

    Article  CAS  PubMed  Google Scholar 

  3. Hoofman J, Secord E (2021) The Effect of COVID-19 on Education. Pediatr Clin North Am 68:1071–1079. https://doi.org/10.1016/J.PCL.2021.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xiang S, Rasool S, Hang Y, Javid K, Javed T, Artene AE (2021) The Effect of COVID-19 Pandemic on Service Sector Sustainability and Growth. Front Psychol 12:1178. https://doi.org/10.3389/FPSYG.2021.633597/BIBTEX

    Article  Google Scholar 

  5. Quek AML, Ooi DSQ et al (2022) Zinc and vitamin C intake increases spike and neutralising antibody production following SARS-CoV-2 infection. Clin Transl Med 12:e731. https://doi.org/10.1002/ctm2.731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nicholas W, Sood N, Lam CN et al (2022) Did prioritizing essential workers help to achieve racial/ethnic equity in early COVID-19 vaccine distribution ? The LA pandemic surveillance cohort study. Am J Ind Med 65:231–241. https://doi.org/10.1002/ajim.23335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Singh P, Singh D, Sa P et al (2021) Insights from nanotechnology in COVID-19: prevention, detection, therapy and immunomodulation. Nanomedicine 16:1219–1235. https://doi.org/10.2217/NNM-2021-0004

    Article  CAS  PubMed  Google Scholar 

  8. Menni C, Valdes AM, Freidin MB et al (2020) Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med 26:1037–1040. https://doi.org/10.1038/s41591-020-0916-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang MC, Hur J, Park D (2020) Interpreting the COVID-19 test results: a guide for physiatrists. Am J Phys Med Rehabil 99:583–585. https://doi.org/10.1097/PHM.0000000000001471

    Article  PubMed  Google Scholar 

  10. Sule WF, Oluwayelu DO (2020) Real-time RT-PCR for COVID-19 diagnosis: challenges and prospects. Pan Afr Med J 35:121. https://doi.org/10.11604/PAMJ.SUPP.2020.35.24258

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wisnewski AV, Luna JC, Redlich CA (2021) Human IgG and IgA responses to COVID-19 mRNA vaccines. PLoS ONE 16:e0249499. https://doi.org/10.1371/JOURNAL.PONE.0249499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chao YX, Rötzschke O, Tan EK (2020) The role of IgA in COVID-19. Brain Behav Immun 87:182–183. https://doi.org/10.1016/J.BBI.2020.05.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang Z, Kong N, Zhang X et al (2020) A materials-science perspective on tackling COVID-19. Nat Rev Mater 5:847–860. https://doi.org/10.1038/s41578-020-00247-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sreepadmanabh M, Sahu AK, Chande A (2020) COVID-19: Advances in diagnostic tools, treatment strategies, and vaccine development. J Biosci 45:148. https://doi.org/10.1007/S12038-020-00114-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan RS, Rehman IU (2020) Spectroscopy as a tool for detection and monitoring of Coronavirus (COVID-19). Expert Rev Mol Diagn 20:647–649. https://doi.org/10.1080/14737159.2020.1766968

    Article  CAS  PubMed  Google Scholar 

  16. Obata J, Kawakami N, Tsutsumi A et al (2021) Icosahedral 60-meric porous structure of designed supramolecular protein nanoparticle TIP60. Chem Commun 57:10226–10229. https://doi.org/10.1039/D1CC03114G

    Article  CAS  Google Scholar 

  17. Kawakami N, Kondo H, Matsuzawa Y et al (2018) Design of hollow protein nanoparticles with modifiable interior and exterior surfaces. Angew Chemie - Int Ed 57:12400–12404. https://doi.org/10.1002/ANIE.201805565

    Article  CAS  Google Scholar 

  18. Soto CM, Ratna BR (2010) Virus hybrids as nanomaterials for biotechnology. Curr Opin Biotechnol 21:426–438. https://doi.org/10.1016/J.COPBIO.2010.07.004

    Article  CAS  PubMed  Google Scholar 

  19. Nunes ÁM, da Silva Filho RC, da Silva KR et al (2022) Gold nanoparticles with different shapes can cause distinct effect on mitochondria bioenergetics. J Nanoparticle Res 24:31. https://doi.org/10.1007/S11051-022-05410-W

    Article  ADS  CAS  Google Scholar 

  20. Canini V, Bono F, Calzavacca P et al (2021) Cytopathology of bronchoalveolar lavages in COVID-19 pneumonia: a pilot study. Cancer Cytopathol 129:632–641. https://doi.org/10.1002/CNCY.22422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chaibun T, Puenpa J, Ngamdee T et al (2021) Rapid electrochemical detection of coronavirus SARS-CoV-2. Nat Commun 12:802. https://doi.org/10.1038/s41467-021-21121-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krishnan S, ul Quasim SZ (2022) Colorimetric visual sensors for point-of-needs testing. Sensors Actuators Rep 4:100078. https://doi.org/10.1016/J.SNR.2022.100078

    Article  Google Scholar 

  23. Saylan Y, Erdem Ö, Ünal S, Denizli A (2019) An alternative medical diagnosis method: biosensors for virus detection. Biosensors 9:65. https://doi.org/10.3390/BIOS9020065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang B, Fang X, Kong J (2019) In situ sampling and monitoring cell-free DNA of the Epstein-Barr virus from dermal interstitial fluid using wearable microneedle patches. ACS Appl Mater Interfaces 11:38448–38458. https://doi.org/10.1021/acsami.9b12244

    Article  CAS  PubMed  Google Scholar 

  25. Toppings NB, Mohon AN, Lee Y et al (2021) A rapid near-patient detection system for SARS-CoV-2 using saliva. Sci Reports 11:13778. https://doi.org/10.1038/s41598-021-92677-z

    Article  CAS  Google Scholar 

  26. Dixon RV, Skaria E, Lau WM et al (2021) Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharm Sin B 11:2344–2361. https://doi.org/10.1016/J.APSB.2021.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zarubova J, Zhang X, Hoffman T et al (2021) Biomaterial-based immunoengineering to fight COVID-19 and infectious diseases. Matter 4:1528–1554. https://doi.org/10.1016/J.MATT.2021.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ménard-Moyon C, Bianco A, Kalantar-Zadeh K (2020) Two-dimensional material-based biosensors for virus detection. ACS Sensors 5:3739–3769. https://doi.org/10.1021/acssensors.0c01961

    Article  CAS  PubMed  Google Scholar 

  29. Bhardwaj N, Bhardwaj SK, Mehta J et al (2017) MOF-bacteriophage biosensor for highly sensitive and specific detection of staphylococcus aureus. ACS Appl Mater Interfaces 9:33589–33598. https://doi.org/10.1021/acsami.7b07818

    Article  CAS  PubMed  Google Scholar 

  30. Li S, Dharmarwardana M, Welch RP et al (2018) Investigation of controlled growth of metal-organic frameworks on anisotropic virus particles. ACS Appl Mater Interfaces 10:18161–18169. https://doi.org/10.1021/acsami.8b01369

    Article  CAS  PubMed  Google Scholar 

  31. Chauhan G, Madou MJ, Kalra S et al (2020) Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano 14:7760–7782. https://doi.org/10.1021/acsnano.0c04006

    Article  CAS  PubMed  Google Scholar 

  32. Tamayo J, Kosaka PM, Ruz JJ et al (2013) Biosensors based on nanomechanical systems. Chem Soc Rev 42:1287–1311. https://doi.org/10.1039/c2cs35293a

    Article  CAS  PubMed  Google Scholar 

  33. Vermisoglou E, Panáček D, Jayaramulu K et al (2020) Human virus detection with graphene-based materials. Biosens Bioelectron 166:112436. https://doi.org/10.1016/j.bios.2020.112436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh KRB, Rathee S, Nagpure G et al (2022) Smart and emerging nanomaterials-based biosensor for SARS-CoV-2 detection. Mater Lett 307:131092. https://doi.org/10.1016/J.MATLET.2021.131092

    Article  CAS  PubMed  Google Scholar 

  35. Saatçi E, Natarajan S (2021) State-of-the-art colloidal particles and unique interfaces-based SARS-CoV-2 detection methods and COVID-19 diagnosis. Curr Opin Colloid Interface Sci 55:101469. https://doi.org/10.1016/J.COCIS.2021.101469

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang X, You J, Wei Y et al (2021) Emerging nanomaterials applied for tackling the COVID-19 cytokine storm. J Mater Chem B 9:8185–8201. https://doi.org/10.1039/D1TB01446C

    Article  CAS  PubMed  Google Scholar 

  37. Zhao J, Zhao F, Li H et al (2022) Magnet-assisted electrochemical immunosensor based on surface-clean Pd-Au nanosheets for sensitive detection of SARS-CoV-2 spike protein. Electrochim Acta 404:139766. https://doi.org/10.1016/J.ELECTACTA.2021.139766

    Article  CAS  PubMed  Google Scholar 

  38. Zhang T, Sun L, Zhang Y (2021) Highly sensitive electrochemical determination of the SARS-COV-2 antigen based on a gold/graphene imprinted poly-arginine sensor. Anal Methods 13:5772–5776. https://doi.org/10.1039/D1AY01478A

    Article  CAS  PubMed  Google Scholar 

  39. El-Awady M, Elmansi H, Belal F, Shabana RA (2022) Insights on the quantitative concurrent fluorescence-based analysis of anti-COVID-19 drugs remdesivir and favipiravir. J Fluoresc 32:1941–1948. https://doi.org/10.1007/S10895-022-02998-Z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yousefi H, Mahmud A, Chang D et al (2021) Detection of SARS-CoV-2 viral particles using direct, reagent-free electrochemical sensing. J Am Chem Soc 143:1722–1727. https://doi.org/10.1021/JACS.0C10810

    Article  CAS  PubMed  Google Scholar 

  41. Acosta M, Fernández LP, Talio MC (2023) Sonochemical Synthesized Manganese Oxide Nanoparticles as Fluorescent Sensor for Selenium (IV) Quantification. Application to Food and Drink Samples. J Fluoresc 2023:1–10. https://doi.org/10.1007/S10895-023-03247-7

    Article  Google Scholar 

  42. Bardajee GR, Zamani M, Sharifi M et al (2022) Rapid and highly sensitive detection of target DNA related to COVID-19 virus with a fluorescent bio-conjugated probe via a FRET mechanism. J Fluoresc 32:1959–1967. https://doi.org/10.1007/S10895-022-02992-5

    Article  CAS  PubMed  Google Scholar 

  43. Ashraf G, Chen W, Asif M et al (2022) Topical advancements in electrochemical and optical signal amplification for biomolecules detection: a comparison. Mater Today Chem 26:101119. https://doi.org/10.1016/J.MTCHEM.2022.101119

    Article  CAS  Google Scholar 

  44. Sravani AB, Mathew EM, Ghate V, Lewis SA (2022) A Sensitive spectrofluorimetric method for curcumin analysis. J Fluoresc 32:1517–1527. https://doi.org/10.1007/S10895-022-02947-W

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Elugoke SE, Fayemi OE, Adekunle AS et al (2023) Sensitive and selective neurotransmitter epinephrine detection at a carbon quantum dots/copper oxide nanocomposite. J Electroanal Chem 929:117120. https://doi.org/10.1016/J.JELECHEM.2022.117120

    Article  CAS  Google Scholar 

  46. Ganesh PS, Kim SY (2022) A comparison of conventional and advanced electroanalytical methods to detect SARS-CoV-2 virus: a concise review. Chemosphere 307:135645. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Assi S, Abbas I, Arafat B et al (2023) Authentication of Covid-19 vaccines using synchronous fluorescence spectroscopy. J Fluoresc 33:1165–1174. https://doi.org/10.1007/S10895-022-03136-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen C, Lai H, Liang H et al (2021) A new method for detection african swine fever virus: time-resolved fluorescence immunoassay. J Fluoresc 31:1291–1296. https://doi.org/10.1007/S10895-021-02754-9

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu L, Bai Q, Zhang X et al (2022) Fluorescent biosensor based on hairpin DNA stabilized copper nanoclusters for chlamydia trachomatis detection. J Fluoresc 32:1651–1660. https://doi.org/10.1007/S10895-022-02961-Y

    Article  CAS  PubMed  Google Scholar 

  50. Ganesh PS, Kim SY, Kaya S, Salim R (2022) An experimental and theoretical approach to electrochemical sensing of environmentally hazardous dihydroxy benzene isomers at polysorbate modified carbon paste electrode. Sci Rep 12:2149. https://doi.org/10.1038/s41598-022-06207-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rane AV, Kanny K, Abitha VK, Thomas S (2018) Methods for synthesis of nanoparticles and fabrication of nanocomposites. Synthesis of inorganic nanomaterials. Woodhead Publishing, pp 121–139. https://doi.org/10.1016/B978-0-08-101975-7.00005-1

    Chapter  Google Scholar 

  52. Dixit N, Singh SP (2022) Laser-Induced Graphene (LIG) as a smart and sustainable material to restrain pandemics and endemics: a perspective. ACS Omega 7:5112–5130. https://doi.org/10.1021/ACSOMEGA.1C06093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu J, Li R, Yang B (2020) Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent Sci 6:2179–2195. https://doi.org/10.1021/ACSCENTSCI.0C01306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Soy S, Sharma SR, Nigam VK (2022) Bio-fabrication of thermozyme-based nano-biosensors: their components and present scenario. J Mater Sci Mater Electron 33:5523–5533. https://doi.org/10.1007/S10854-022-07741-9

    Article  CAS  Google Scholar 

  55. Toppo AL, Jujjavarapu SE (2022) New insights for integration of nano particle with microfluidic systems for sensor applications. Biomed Microdevices 24:13. https://doi.org/10.1007/S10544-021-00598-5

    Article  CAS  PubMed  Google Scholar 

  56. Hu X, Li Z, Yang Z et al (2022) Fabrication of functional polycatechol nanoparticles. ACS Macro Lett 11:251–256. https://doi.org/10.1021/acsmacrolett.1c00729

    Article  CAS  PubMed  Google Scholar 

  57. Lv J, Gao X, Han B et al (2022) Self-assembled inorganic chiral superstructures. Nat Rev Chem 62(6):125–145. https://doi.org/10.1038/s41570-021-00350-w

    Article  Google Scholar 

  58. Salem SS (2022) Bio-fabrication of selenium nanoparticles using baker’s yeast extract and its antimicrobial efficacy on food borne pathogens. Appl Biochem Biotechnol 194:1898–1910. https://doi.org/10.1007/S12010-022-03809-8

    Article  CAS  PubMed  Google Scholar 

  59. Abbas M, Susapto HH, Hauser CAE (2022) Synthesis and organization of gold-peptide nanoparticles for catalytic activities. ACS Omega 7:2082–2090. https://doi.org/10.1021/ACSOMEGA.1C05546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He L, Mu J, Gang O, Chen X (2021) Rationally programming nanomaterials with DNA for biomedical applications. Adv Sci 8:2003775. https://doi.org/10.1002/ADVS.202003775

    Article  CAS  Google Scholar 

  61. Oh JW, Lim DK, Kim GH et al (2014) Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. J Am Chem Soc 136:14052–14059. https://doi.org/10.1021/JA504270D

    Article  CAS  PubMed  Google Scholar 

  62. Zhang L, Gu C, Wen J et al (2020) Recent advances in nanomaterial-based biosensors for the detection of exosomes. Anal Bioanal Chem 413:83–102. https://doi.org/10.1007/S00216-020-03000-0

    Article  PubMed  Google Scholar 

  63. Zhao J, Liu C, Li Y et al (2020) Thermophoretic detection of exosomal microRNAs by nanoflares. J Am Chem Soc 142:4996–5001. https://doi.org/10.1021/JACS.9B13960

    Article  CAS  PubMed  Google Scholar 

  64. Singh YD, Ningthoujam R, Panda MK et al (2021) Insight from nanomaterials and nanotechnology towards COVID-19. Sensors Int 2:100099. https://doi.org/10.1016/J.SINTL.2021.100099

    Article  Google Scholar 

  65. Srivastava M, Srivastava N, Mishra PK, Malhotra BD (2021) Prospects of nanomaterials-enabled biosensors for COVID-19 detection. Sci Total Environ 754:142363. https://doi.org/10.1016/J.SCITOTENV.2020.142363

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Bisht A, Mishra A, Bisht H, Tripathi RM (2021) Nanomaterial based biosensors for detection of viruses including SARS-CoV-2: a review. J Anal Test 5:327–340. https://doi.org/10.1007/S41664-021-00200-0

    Article  PubMed  PubMed Central  Google Scholar 

  67. Choi HK, Lee MJ, Lee SN et al (2021) Noble metal nanomaterial-based biosensors for electrochemical and optical detection of viruses causing respiratory illnesses. Front Chem 9:672739. https://doi.org/10.3389/FCHEM.2021.672739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peng Y, Lin C, Long L et al (2021) Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection. Nano-Micro Lett 13:52. https://doi.org/10.1007/S40820-020-00565-4

    Article  ADS  Google Scholar 

  69. Balkourani G, Brouzgou A, Archonti M et al (2021) Emerging materials for the electrochemical detection of COVID-19. J Electroanal Chem (Lausanne Switz) 893:115289. https://doi.org/10.1016/J.JELECHEM.2021.115289

    Article  CAS  Google Scholar 

  70. Wang M, Fu A, Hu B et al (2020) Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Small 16:2002169. https://doi.org/10.1002/SMLL.202002169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rennick JJ, Johnston APR, Parton RG (2021) Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol 16:266–276. https://doi.org/10.1038/s41565-021-00858-8

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Kaur A, Kaur P, Ahuja S (2020) Förster resonance energy transfer (FRET) and applications thereof. Anal Methods 12:5532–5550. https://doi.org/10.1039/D0AY01961E

    Article  CAS  PubMed  Google Scholar 

  73. Viljoen A, Mathelié-Guinlet M, Ray A et al (2021) Force spectroscopy of single cells using atomic force microscopy. Nat Rev Methods Prim 1:63. https://doi.org/10.1038/s43586-021-00062-x

    Article  CAS  Google Scholar 

  74. Leïchlé T, Nicu L, Alava T (2020) MEMS biosensors and COVID-19: missed opportunity. ACS Sensors 5:3297–3305. https://doi.org/10.1021/acssensors.0c01463

    Article  CAS  PubMed  Google Scholar 

  75. Li Q, Guan X, Wu P et al (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 382:1199–1207. https://doi.org/10.1056/nejmoa2001316

    Article  PubMed  PubMed Central  Google Scholar 

  76. Narayan RJ (2016) Medical Biosensors for Point of Care (POC) Applications. Elsevier Inc

    Google Scholar 

  77. Sultangaziyev A, Bukasov R (2020) Review: applications of surface-enhanced fluorescence (SEF) spectroscopy in bio-detection and biosensing. Sens Bio-Sensing Res 30:100382. https://doi.org/10.1016/j.sbsr.2020.100382

    Article  Google Scholar 

  78. Imani M, Mohajeri N, Rastegar M, Zarghami N (2021) Recent advances in FRET-Based biosensors for biomedical applications. Anal Biochem 630:114323. https://doi.org/10.1016/J.AB.2021.114323

    Article  CAS  PubMed  Google Scholar 

  79. Liu L, He F, Yu Y, Wang Y (2020) Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening. Front Bioeng Biotechnol 8:595497. https://doi.org/10.3389/FBIOE.2020.595497

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pazos MD, Hu Y, Elani Y et al (2021) Tattoo Inks for optical biosensing in interstitial fluid. Adv Healthc Mater 10:2101238. https://doi.org/10.1002/ADHM.202101238

    Article  CAS  Google Scholar 

  81. Yang M, Liu M, Cheng J, Wang H (2021) A movable type bioelectronics printing technology for modular fabrication of biosensors. Sci Rep 11:22323. https://doi.org/10.1038/s41598-021-01741-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu K, Liu J, Saha R et al (2020) Magnetic particle spectroscopy for detection of influenza A virus subtype H1N1. ACS Appl Mater Interfaces 12:13686–13697. https://doi.org/10.1021/acsami.0c00815

    Article  CAS  PubMed  Google Scholar 

  83. Ganganboina AB, Khoris IM, Chowdhury AD et al (2020) Ultrasensitive detection of the hepatitis E virus by electrocatalytic water oxidation using Pt-Co3O4 hollow cages. ACS Appl Mater Interfaces 12:50212–50221. https://doi.org/10.1021/acsami.0c13247

    Article  CAS  PubMed  Google Scholar 

  84. Mak WC, Cheung KY, Orban J et al (2015) Surface-engineered contact lens as an advanced theranostic platform for modulation and detection of viral infection. ACS Appl Mater Interfaces 7:25487–25494. https://doi.org/10.1021/acsami.5b08644

    Article  CAS  PubMed  Google Scholar 

  85. Dong S, Zhao R, Zhu J et al (2015) Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of avian influenza A (H7N9) virus. ACS Appl Mater Interfaces 7:8834–8842. https://doi.org/10.1021/acsami.5b01438

    Article  CAS  PubMed  Google Scholar 

  86. Zang F, Gerasopoulos K, Brown AD et al (2017) Capillary microfluidics-assembled virus-like particle bionanoreceptor interfaces for label-free biosensing. ACS Appl Mater Interfaces 9:8471–8479. https://doi.org/10.1021/acsami.6b14045

    Article  CAS  PubMed  Google Scholar 

  87. Oh S, Kim J, Tran VT et al (2018) Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza A virus detection. ACS Appl Mater Interfaces 10:12534–12543. https://doi.org/10.1021/acsami.8b02735

    Article  CAS  PubMed  Google Scholar 

  88. Li J, Yang K, Wu Z et al (2019) Nitrogen-doped porous carbon-based fluorescence sensor for the detection of ZIKV RNA sequences: fluorescence image analysis. Talanta 205:120091. https://doi.org/10.1016/j.talanta.2019.06.091

    Article  CAS  PubMed  Google Scholar 

  89. Hideshima S, Hayashi H, Hinou H et al (2019) Glycan-immobilized dual-channel field effect transistor biosensor for the rapid identification of pandemic influenza viral particles. Sci Rep 9:11616. https://doi.org/10.1038/s41598-019-48076-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang C, Wang C, Wang X et al (2019) Magnetic SERS strip for sensitive and simultaneous detection of respiratory viruses. ACS Appl Mater Interfaces 11:19495–19505. https://doi.org/10.1021/acsami.9b03920

    Article  CAS  PubMed  Google Scholar 

  91. Nidzworski D, Siuzdak K, Niedziałkowski P et al (2017) A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci Rep 7:15707. https://doi.org/10.1038/s41598-017-15806-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Udugama B, Kadhiresan P, Kozlowski HN et al (2020) Diagnosing COVID-19: the disease and tools for detection. ACS Nano 14:3822–3835. https://doi.org/10.1021/acsnano.0c02624

    Article  CAS  PubMed  Google Scholar 

  93. Lu R, Zhao X, Li J et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574. https://doi.org/10.1016/S0140-6736(20)30251-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Naqvi AAT, Fatima K, Mohammad T et al (2020) Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 1866:165878. https://doi.org/10.1016/J.BBADIS.2020.165878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Emrani J, Ahmed M, Jeffers-Francis L et al (2021) SARS-COV-2, infection, transmission, transcription, translation, proteins, and treatment: a review. Int J Biol Macromol 193:1249–1273. https://doi.org/10.1016/J.IJBIOMAC.2021.10.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Peacock TP, Goldhill DH, Zhou J et al (2021) The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol 6:899–909. https://doi.org/10.1038/s41564-021-00908-w

    Article  CAS  PubMed  Google Scholar 

  97. Finkel Y, Mizrahi O, Nachshon A et al (2020) The coding capacity of SARS-CoV-2. Nature 589:125–130. https://doi.org/10.1038/s41586-020-2739-1

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Tang YD, Fang QQ, Liu JT et al (2016) Open reading frames 1a and 1b of the porcine reproductive and respiratory syndrome virus (PRRSV) collaboratively initiate viral minus-strand RNA synthesis. Biochem Biophys Res Commun 477:927–931. https://doi.org/10.1016/J.BBRC.2016.06.161

    Article  CAS  PubMed  Google Scholar 

  99. Feng W, Newbigging AM, Le C et al (2020) Molecular diagnosis of COVID-19: challenges and research needs. Anal Chem 92:10196–10209. https://doi.org/10.1021/acs.analchem.0c02060

    Article  CAS  PubMed  Google Scholar 

  100. Wrapp D, Wang N, Corbett KS et al (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. bioRxiv 1263:1260–1263. https://doi.org/10.1101/2020.02.11.944462

    Article  CAS  Google Scholar 

  101. Ning S, Yu B, Wang Y, Wang F (2021) SARS-CoV-2: origin, evolution, and targeting inhibition. Front Cell Infect Microbiol 11:676451. https://doi.org/10.3389/FCIMB.2021.676451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sohail A, Nutini A (2020) Forecasting the timeframe of 2019-nCoV and human cells interaction with reverse engineering. Prog Biophys Mol Biol 155:29–35. https://doi.org/10.1016/J.PBIOMOLBIO.2020.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Callaway E (2022) Scientists deliberately gave people COVID — here’s what they learnt. Nature 602:191–192. https://doi.org/10.1038/D41586-022-00319-9

    Article  ADS  CAS  PubMed  Google Scholar 

  104. Leung NHL (2021) Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol 19:528–545. https://doi.org/10.1038/s41579-021-00535-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kames J, Holcomb DD, Kimchi O et al (2020) Sequence analysis of SARS-CoV-2 genome reveals features important for vaccine design. Sci Rep 10:15643. https://doi.org/10.1038/s41598-020-72533-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mohamadian M, Chiti H, Shoghli A et al (2021) COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med 23:e3303. https://doi.org/10.1002/JGM.3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lasserre P, Balansethupathy B, Vezza VJ et al (2022) SARS-CoV-2 aptasensors based on electrochemical impedance spectroscopy and low-cost gold electrode substrates. Anal Chem 94:2126–2133. https://doi.org/10.1021/ACS.ANALCHEM.1C04456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Weiss C, Carriere M, Fusco L et al (2020) Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano 14:6383–6406. https://doi.org/10.1021/ACSNANO.0C03697

    Article  CAS  PubMed  Google Scholar 

  109. Flerlage T, Boyd DF, Meliopoulos V et al (2021) Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nat Rev Microbiol 19:425–441. https://doi.org/10.1038/s41579-021-00542-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Medeiros IG, Khayat AS, Stransky B et al (2021) A small interfering RNA (siRNA) database for SARS-CoV-2. Sci Rep 11:8849. https://doi.org/10.1038/s41598-021-88310-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Georgiou PG, Guy CS, Hasan M et al (2022) Plasmonic detection of SARS-CoV-2 spike protein with polymer-stabilized glycosylated gold nanorods. ACS Macro Lett 47:317–322. https://doi.org/10.1021/ACSMACROLETT.1C00716

    Article  Google Scholar 

  112. Erdem Ö, Derin E, Sagdic K et al (2021) Smart materials-integrated sensor technologies for COVID-19 diagnosis. Emergent Mater 4:169–185. https://doi.org/10.1007/s42247-020-00150-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yang Y, Peng Y, Lin C et al (2021) Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection. Nano-Micro Lett 13:109. https://doi.org/10.1007/S40820-021-00620-8

    Article  ADS  CAS  Google Scholar 

  114. Yang J (2021) Real nano “light vaccine” will benefit to COVID-19 pandemic control. Nano-Micro Lett 13:185. https://doi.org/10.1007/S40820-021-00723-2

    Article  ADS  Google Scholar 

  115. Orooji Y, Sohrabi H, Hemmat N et al (2021) An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Lett 13:18. https://doi.org/10.1007/S40820-020-00533-Y

    Article  ADS  Google Scholar 

  116. Wang Q, Wang X, Tang PS et al (2017) Targeted sequencing of both DNA strands barcoded and captured individually by RNA probes to identify genome-wide ultra-rare mutations. Sci Rep 7:3356. https://doi.org/10.1038/s41598-017-03448-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang Y, Zou Q, Li F et al (2021) Identification of the cross-strand chimeric RNAs generated by fusions of bi-directional transcripts. Nat Commun 12:4645. https://doi.org/10.1038/s41467-021-24910-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yoon J, Shin M, Lee JY et al (2022) RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. J Control Release 342:228–240. https://doi.org/10.1016/J.JCONREL.2022.01.012

    Article  CAS  PubMed  Google Scholar 

  119. Qiu G, Gai Z, Tao Y et al (2020) Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 14:5268–5277. https://doi.org/10.1021/acsnano.0c02439

    Article  CAS  PubMed  Google Scholar 

  120. Torrente-Rodríguez RM, Lukas H, Tu J et al (2020) SARS-CoV-2 RapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 3:1981–1998. https://doi.org/10.1016/j.matt.2020.09.027

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ali MA, Hu C, Jahan S et al (2021) Sensing of COVID-19 antibodies in seconds via aerosol jet nanoprinted reduced-graphene-oxide-coated 3D electrodes. Adv Mater 33:2006647. https://doi.org/10.1002/adma.202006647

    Article  CAS  PubMed  Google Scholar 

  122. Makela M, Lin PT (2021) Detection of SARS-CoV-2 DNA targets using femtoliter optofluidic waveguides. Anal Chem 93:4154–4159. https://doi.org/10.1021/acs.analchem.0c02971

    Article  CAS  PubMed  Google Scholar 

  123. Pang B, Xu J, Liu Y et al (2020) Isothermal amplification and ambient visualization in a single tube for the detection of SARS-CoV-2 using loop-mediated amplification and CRISPR technology. Anal Chem 92:16204–16212. https://doi.org/10.1021/acs.analchem.0c04047

    Article  CAS  PubMed  Google Scholar 

  124. Yuan X, Yang C, He Q et al (2020) Current and perspective diagnostic techniques for COVID-19. ACS Infect Dis 6:1998–2016. https://doi.org/10.1021/acsinfecdis.0c00365

    Article  CAS  PubMed  Google Scholar 

  125. Li Y, Li S, Wang J, Liu G (2019) CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol 37:730–743. https://doi.org/10.1016/j.tibtech.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  126. Zhu X, Wang X, Li S et al (2021) Rapid, ultrasensitive, and highly specific diagnosis of COVID-19 by CRISPR-based detection. ACS Sens 6:881–888. https://doi.org/10.1021/acssensors.0c01984

    Article  CAS  PubMed  Google Scholar 

  127. Rahimi H, Salehiabar M, Barsbay M et al (2021) CRISPR systems for COVID-19 diagnosis. ACS Sensors 6:1430–1445. https://doi.org/10.1021/acssensors.0c02312

    Article  CAS  PubMed  Google Scholar 

  128. Lagopati N, Tsioli P, Mourkioti I et al (2021) Sample pooling strategies for SARS-CoV-2 detection. J Virol Methods 289:114044. https://doi.org/10.1016/j.jviromet.2020.114044

    Article  CAS  PubMed  Google Scholar 

  129. Huang Z, Tian D, Liu Y et al (2020) Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis. Biosens Bioelectron 164:112316. https://doi.org/10.1016/j.bios.2020.112316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fresco-Taboada A, García-Durán M, Aira C et al (2022) Diagnostic performance of two serological assays for the detection of SARS-CoV-2 specific antibodies: surveillance after vaccination. Diagn Microbiol Infect Dis 102:115650. https://doi.org/10.1016/J.DIAGMICROBIO.2022.115650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bontempi E (2021) The europe second wave of COVID-19 infection and the Italy “strange” situation. Environ Res 193:110476. https://doi.org/10.1016/J.ENVRES.2020.110476

    Article  CAS  PubMed  Google Scholar 

  132. Yakoh A, Pimpitak U, Rengpipat S et al (2021) Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosens Bioelectron 176:112912. https://doi.org/10.1016/j.bios.2020.112912

    Article  CAS  PubMed  Google Scholar 

  133. Trivedi SU, Miao C, Sanchez JE et al (2019) development and evaluation of a multiplexed immunoassay for simultaneous detection of serum IgG antibodies to six human coronaviruses. Sci Rep 9:1390. https://doi.org/10.1038/s41598-018-37747-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen R, Ren C, Liu M et al (2021) Early detection of SARS-CoV-2 seroconversion in humans with aggregation-induced near-infrared emission nanoparticle-labeled lateral flow immunoassay. ACS Nano 15:8996–9004. https://doi.org/10.1021/ACSNANO.1C01932

    Article  CAS  PubMed  Google Scholar 

  135. Li Z, Yi Y, Luo X et al (2020) Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol 92:1518–1524. https://doi.org/10.1002/jmv.25727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ahn DG, Jeon IJ, Kim JD et al (2009) RNA aptamer-based sensitive detection of SARS coronavirus nucleocapsid protein. Analyst 134:1896–1901. https://doi.org/10.1039/b906788d

    Article  ADS  CAS  PubMed  Google Scholar 

  137. Seo G, Lee G, Kim MJ et al (2020) Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 14:5135–5142. https://doi.org/10.1021/acsnano.0c02823

    Article  CAS  PubMed  Google Scholar 

  138. Li J, Lillehoj PB (2021) Microfluidic magneto immunosensor for rapid, high sensitivity measurements of SARS-CoV-2 nucleocapsid protein in serum. ACS Sensors 6:1270–1278. https://doi.org/10.1021/acssensors.0c02561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Guo L, Sun X, Wang X et al (2020) SARS-CoV-2 detection with CRISPR diagnostics. Cell Discov 6:34. https://doi.org/10.1038/s41421-020-0174-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ding X, Yin K, Li Z et al (2020) Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat Commun 11:4711. https://doi.org/10.1038/s41467-020-18575-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xiong Y, Zhang J, Yang Z et al (2020) Functional DNA regulated CRISPR-Cas12a sensors for point-of-care diagnostics of non-nucleic-acid targets. J Am Chem Soc 142:207–213. https://doi.org/10.1021/jacs.9b09211

    Article  CAS  PubMed  Google Scholar 

  142. Tian T, Shu B, Jiang Y et al (2021) An ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano 15:1167–1178. https://doi.org/10.1021/acsnano.0c08165

    Article  CAS  PubMed  Google Scholar 

  143. Chandra S, Bharadwaj R, Mukherji S (2017) Label free ultrasensitive optical sensor decorated with polyaniline nanofibers: Characterization and immunosensing application. Sensors Actuators B Chem 240:443–450. https://doi.org/10.1016/j.snb.2016.08.103

    Article  CAS  Google Scholar 

  144. Li D, Chen H, Gao X et al (2021) Development of general methods for detection of virus by engineering fluorescent silver nanoclusters. ACS Sensors 6:613–627. https://doi.org/10.1021/acssensors.0c02322

    Article  CAS  PubMed  Google Scholar 

  145. Jiang Y, Hu M, Liu AA et al (2021) Detection of SARS-CoV-2 by CRISPR/Cas12a-enhanced colorimetry. ACS Sensors 6:1086–1093. https://doi.org/10.1021/acssensors.0c02365

    Article  CAS  PubMed  Google Scholar 

  146. Zhang WS, Pan J, Li F et al (2021) Reverse transcription recombinase polymerase amplification coupled with CRISPR-Cas12a for facile and highly sensitive colorimetric SARS-CoV-2 detection. Anal Chem 93:4126–4133. https://doi.org/10.1021/acs.analchem.1c00013

    Article  CAS  PubMed  Google Scholar 

  147. Marston DJ, Vilela M, Huh J et al (2020) Multiplexed GTPase and GEF biosensor imaging enables network connectivity analysis. Nat Chem Biol 16:826–833. https://doi.org/10.1038/s41589-020-0542-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yang SP, Chen SR, Liu SW et al (2015) Platforms formed from a three-dimensional Cu-based zwitterionic metal-organic framework and probe ss-DNA: selective fluorescent biosensors for human immunodeficiency virus 1 ds-DNA and sudan virus RNA sequences. Anal Chem 87:12206–12214. https://doi.org/10.1021/acs.analchem.5b03084

    Article  CAS  PubMed  Google Scholar 

  149. Zhang Y, Shi F, Zhang C et al (2023) Detection of avian influenza virus H9N2 based on self-driving and self-sensing microcantilever piezoelectric sensor. Chinese Chem Lett 34:107700. https://doi.org/10.1016/j.cclet.2022.07.043

    Article  CAS  Google Scholar 

  150. Toubanaki DK, Margaroni M, Prapas A, Karagouni E (2020) Development of a nanoparticle-based lateral flow strip biosensor for visual detection of whole nervous necrosis virus particles. Sci Rep 10:6529. https://doi.org/10.1038/s41598-020-63553-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rizvi AS, Murtaza G, Zhang W et al (2023) Aptamer-linked photonic crystal hydrogel sensor for rapid point-of-care detection of human immuno-deficiency virus-1 (HIV-1). J Pharm Biomed Anal 227:115104. https://doi.org/10.1016/j.jpba.2022.115104

    Article  CAS  PubMed  Google Scholar 

  152. Yuan R, Wei J, Geng R et al (2023) Sensitive detection of African swine fever virus p54 based on in-situ amplification of disposable electrochemical sensor chip. Sensors Actuators B Chem 380:133363. https://doi.org/10.1016/j.snb.2023.133363

    Article  CAS  Google Scholar 

  153. Antipchik M, Reut J, Ayankojo AG et al (2022) MIP-based electrochemical sensor for direct detection of hepatitis C virus via E2 envelope protein. Talanta 250:123737. https://doi.org/10.1016/j.talanta.2022.123737

    Article  CAS  PubMed  Google Scholar 

  154. Khan RR, Ibrahim H, Rawal G et al (2023) Multichannel microfluidic virus sensor for rapid detection of respiratory viruses using virus-imprinted polymer for digital livestock farming. Sensors Actuators B Chem 389:133920. https://doi.org/10.1016/j.snb.2023.133920

    Article  CAS  Google Scholar 

  155. Wang L, Yang J, He S et al (2022) A mild and safe gas-responsive molecularly imprinted sensor for highly specific recognition of hepatitis B virus. Sensors Actuators B Chem 366:131990. https://doi.org/10.1016/j.snb.2022.131990

    Article  CAS  Google Scholar 

  156. Kumar AVP, Dubey SK, Tiwari S et al (2021) Recent advances in nanoparticles mediated photothermal therapy induced tumor regression. Int J Pharm 606:120848. https://doi.org/10.1016/J.IJPHARM.2021.120848

    Article  CAS  PubMed  Google Scholar 

  157. Justino CIL, Rocha-Santos TAP, Cardoso S et al (2013) Strategies for enhancing the analytical performance of nanomaterial-based sensors. TrAC Trends Anal Chem 47:27–36. https://doi.org/10.1016/J.TRAC.2013.02.004

    Article  CAS  Google Scholar 

  158. Esteves E, Karina Mendes A, BarrosID M et al (2022) Population wide testing pooling strategy for SARS-CoV-2 detection using saliva. PLoS ONE 17:e0263033. https://doi.org/10.1371/JOURNAL.PONE.0263033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Baharfar M, Rahbar M, Tajik M, Liu G (2020) Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices. Biosens Bioelectron 167:112506. https://doi.org/10.1016/J.BIOS.2020.112506

    Article  CAS  PubMed  Google Scholar 

  160. Wang C, Wang L, Tadepalli S et al (2018) Ultrarobust biochips with metal-organic framework coating for point-of-care diagnosis. ACS Sensors 3:342–351. https://doi.org/10.1021/acssensors.7b00762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chan WCW (2020) Nano research for COVID-19. ACS Nano 14:3719–3720. https://doi.org/10.1021/acsnano.0c02540

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001 Lisboa, Portugal, Panjab University, Chandigarh-160014, India and Kurukshetra University Kurukshetra-136119, India, for providing a research platform.

Funding

Fundação para a Ciência e Tecnologia (FCT), Portugal, for the Centro de Química Estrutural, Institute of Molecular Sciences projects UIDB/00100/2020, UIDP/00100/2020 and LA/P/0056/2020 projects.

Author information

Authors and Affiliations

Authors

Contributions

Priyanka & Brij Mohan have performed the literature search and drafted and critically revised the work. Ekta Poonia, Sandeep Kumar, Virender, Charan Singh, Jichuan Xiong, Xuefeng Liu, Armando J. L. Pombeiro, Gurjaspreet Singh: contributed to the critical revision of the work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Brij Mohan or Gurjaspreet Singh.

Ethics declarations

Ethical Approval

Not Applicable.

Consent to Participate

Not applicable.

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2005 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyanka, Mohan, B., Poonia, E. et al. COVID-19 Virus Structural Details: Optical and Electrochemical Detection. J Fluoresc 34, 479–500 (2024). https://doi.org/10.1007/s10895-023-03307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03307-y

Keywords

Navigation