Skip to main content
Log in

Nonlinear Optical Properties and All Optical Switching of Curcumin Derivatives

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this work OR1(E1,6E) -1,7-bis (4-propyloxy phenyl) hepta-1,6-diene-3,5 dione compound is synthesized. The compound has been characterized via computational technique by studying the molecule’s electronic structures through calculating its HOMO and LUMO energies, and its band gap energy (EHOMO-ELUMO). The nonlinear refractive index (NLRI) of the solution of OR1 compound in DMF solvent is determined using diffraction patterns (DPs) which resulted when a continuous wave laser beam of wavelength 473 nm traversed the compound solution in a glass cell of 1 mm thickness. By counting the number of rings under maximum beam input power, the NLRI of value 10− 6 cm2/W resulted. The NLRI is calculated once more via the Z-scan technique and a value of 0.25 × 10− 7 cm2/W is obtained. The vertical convection current in the OR1 compound solution appears to be responsible for the asymmetries noticed in the DPs. The temporal variation of each DP is noticed together with the evolution of DPs against beam input power. DPs are numerically simulated based on the Fresnel-Kirchhoff integral with good accord compared to the experimental findings. Dynamic and static all-optical switching in the OR1 compound using two laser beams (473 and 532 nm) is tested successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Sadr MH, Mohammadi VM, Soltani B, Ghaleh KJ, Mousav SZ (2016) Nonlinear optical responses of MoS4Cu4(PzMe3)6Cl2 under low power CW He-Ne laser excitation. Optik 127:6050–6055

    Article  CAS  Google Scholar 

  2. Jassem AM, Hassan QMA, Emshary CA, Sultan HA, Almashal FA, Radhi WA (2020) Synthesis and optical nonlinear properties performance of azonaphthol dye. Phys Scr 96:025503 (20 pp)

    Article  Google Scholar 

  3. Zidan MD, Alsous MB, Allaf AW, Allahham A, AL-Zier A, Rihawi H (2016) Z- scan measurements of the third order optical nonlinearity of C60doped poly(ethylacetylenecarboxylate) under CW regime. Optik 127:2566–2569

    Article  CAS  Google Scholar 

  4. Jassem AM, Hassan QMA, Almashal FA, Sultan HA, Dhumad AM, Emshary CA, Albaaj LT (2021) Spectroscopic study, theoretical calculations, and optical nonlinear properties of amino acid (glycine)-4-nitro benzaldeyhyde-derived Schiff base. Opt Mater 122:111750 (17 pp)

    Article  CAS  Google Scholar 

  5. Dehghani Z, Nazerdeylami S, Iranizad ES, Ara MH (2011) Synthesis and investigation of nonlinear optical properties of semiconductor ZnS nanoparticles. J Phys Chem Sol 72:1008–1010

    Article  CAS  Google Scholar 

  6. Hassan QMA, Raheem NA, Emshary CA, Dhumad AM, Sultan HA, Fahad T (2022) Preparation, DFT and optical nonlinear studies of a novel azo-(β)- diketone dye. Opt Las Technol 148:107705 (14 pp)

  7. Kumara K, Shetty TC, Maidur SR, Patil PS, Dharmaprakash SM (2019) Continuous wave laser induced nonlinear optical response of nitrogen doped graphene oxide. Optik 178:384–393

    Article  CAS  Google Scholar 

  8. Dhumad AM, Hassan QMA, Fahad T, Emshary CA, Raheem NA, Sultan HA (2021) Synthesis, structural characterization and optical nonlinear properties of two azo- β-diketones. J Mol Struct 1235:130196 (9 pp)

    Article  CAS  Google Scholar 

  9. Maidur SR, Patil PS (2019) Linear optical and third- order nonlinear optical properties of anthracene chalcone derivatives doped PMMA thin films. Optik 190:54–67

    Article  CAS  Google Scholar 

  10. Emshary CA, Ali IM, Hassan QMA, Sultan HA (2021) Linear and nonlinear optical properties of potassium dichromate in solution and solid polymer film. Phys B 613:413014 (12 pp)

    Article  CAS  Google Scholar 

  11. Thangara M, Vinitha G, SabariGirisun TC, Anandan P, Ravi G (2015) Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol. Opt Las Tech 73:130–134

    Article  Google Scholar 

  12. Sultan HA, Dhumad AM, Hassan QMA, Fahad T, Emshary CA, Raheem NA (2021) Synthesis, characterization and the nonlinear optical properties of newly synthesized 4-((1,3-dioxo-1-phenylbutan-2-yl)diazenyl) benzenesulfonamide. Spectrochim Acta Part A Mol Biomol Spectrosc 251:119487 (15 pp)

    Article  CAS  Google Scholar 

  13. Almashal FA, Mohammed MQ, Hassan QMA, Emshary CA, Sultan HA, Dhumad AM (2020) Spectroscopic and thermal nonlinearity study of a Schiff base compound. Opt Mater 100:10970312

    Article  Google Scholar 

  14. Khalaf SK, Hassan QMA, Emshary CA, Sultan HA (2022) Concentration effect on optical properties and optical limiting of PVA doped with nigrosin films. J Photochem Photobiol A Chem 427:113809 (11 pp)

    Article  CAS  Google Scholar 

  15. Zidan MD, Allaf AW, Allahham A, Alzier A (2020) Investigation of nonlinear optical properties of chromium tetrapyrrole dicarbonyl complex. Optik 200:1631756

    Article  Google Scholar 

  16. Elias RS, Hassan QMA, Emshary CA, Sultan HA, Saeed BA (2019) Formation and temporal evolution of diffraction ring patterns in a newly prepared dihydropyridone. Spectrochim Acta Part A: Mol Biomol Spectrosc 223:117297 (16 pp)

    Article  CAS  Google Scholar 

  17. Mohandoss R, Dhanuskodi S, Vinitha G (2015) χ(3) measurement and optical power limiting behavior of manganese doped lithium tetraborate nanoparticles, Spectr. Acta Mol Biomol Spectrosc 136:931–936

    Article  CAS  Google Scholar 

  18. Hussain M, Sh, Hassan QMA, Sultan HA, Al- Asadi AS, Chayed HT, Emshary CA (2019) Preparation, characterization, and study of the nonlinear optical properties of a new prepared nanoparticles copolymer. Mod Phys Let B 33:1950456 (17 pp)

    Article  CAS  Google Scholar 

  19. Ali SA, Hassan QMA, Emshary CA, Sultan HA (2020) Characterizing optical and morphological properties of Eriochrome Black T doped polyvinyl alcohol film. Phys Scr 95(11):095814

    Article  CAS  Google Scholar 

  20. Thangaraj M, Ravi G, Girisun TC, Vinitha G, Loganathan A (2015) Ethylenediaminium di(4-nitrophenolate): a third order NLO material for optical limiting applications. Spectr Acta Mol Biomol Spectrosc 138:158–163

    Article  CAS  Google Scholar 

  21. Hassan QMA, Bakr H, Emshary CA, Sultan HA (2020) Studying the surface morphology, optical and nonlinear optical properties of epoxy resin doped nickel nitrate film. Optik 213:164771 (11 pp)

    Article  CAS  Google Scholar 

  22. Gillespie A (1994) Optical information processing. Phys Edu 29:127–134

    Article  Google Scholar 

  23. Emshary CA, Hassan QMA, Bakr H, Sultan HA (2021) Determination of the optical constants, nonlinear optical parameters and threshold limiting of methyl red-epoxy resin film. Phy B 622:413354 (8 pp)

    Article  CAS  Google Scholar 

  24. Shabeeb GM, Emshary CA, Hassan QMA, Sultan HA (2020) Investigating the nonlinear optical properties of poly eosin-Y phthalate solution under irradiation with low power visible CW laser light. Phys B 578:41184713

    Article  Google Scholar 

  25. Al-Timimy Kh A, Hassan QMA, Sultan HA, Emshary CA (2020) Solvents effect on the optical nonlinear properties of the sudan iv. Optik 224:165398 (15 pp)

    Article  Google Scholar 

  26. Mutlaq DZ, Hassan QMA, Sultan HA, Emshary CA (2021) The optical nonlinear properties of a new synthesized azo-nitrone compound. Opt Mater 113:11081513

    Article  Google Scholar 

  27. Hassan QMA, Emshary CA, Sultan HA (2021) Investigating the optical nonlinear properties and limiting optical of eosin methylene blue solution using a cw laser beam. Phys Scr 96:095503 (15 pp)

    Article  Google Scholar 

  28. Serpico C, Delgiusto P, Fabris A, Gelmetti F, Milloch M, Salom A, Wang D Phase-modulation SLED Operation Mode at Elettra. Proceedings of IPAC, San Sebas-ion, Spain, 83–85 MOPC 010

  29. Al-Hamdani UJ, Hassan QMA, Emshary CA, Sultan HA, Dhumad AM, Al-Jaber AA (2021) All optical switching and the optical nonlinear properties of 4-(benzothiazolyldiazenyl)-3-chlorophenyl 4-(nonylthio)benzoate (EB-3Cl). Optik 248:168196 (17 pp)

    Article  CAS  Google Scholar 

  30. Al-Hamdani UJ, Hassan QMA, Zaidan AM, Sultan HA, Hussain KA, Emshary CA, Alabdullah ZT (2022) Optical nonlinear properties and all optical switching in a synthesized liquid crystal. J Molec Liq 361:119676 (13 pp)

    Article  CAS  Google Scholar 

  31. Faisal AG, Hassan QMA, Alsalim TA, Sultan HA, Kamounah FS, Emshary CA (2022) Synthesis, optical nonlinear properties, and all-optical switching of curcumin analogues. J Phys Org Chem e4401:1–16

    Google Scholar 

  32. Al-Hujaj HH, Hassan QMA, Almashal FA, Sultan HA, Dhumad AM, Jassem AM, Emshary CA (2022) Benzenesulfonamide-thiazole system bearing an azide group: synthesis and evaluation of its optical nonlinear responses. Optik 265:169477 (16 pp)

    Article  CAS  Google Scholar 

  33. Salim J, Kh, Hassan QMA, Jassem AM, Sultan HA, Dhumad AM, Emshary CA (2022) An efficient ultrasound-assisted CH3COONa catalyzed synthesis of thiazolidinone molecule: theoretical and nonlinear optical evaluations of thiazolidinone-Schiff base derivative. Opt Mater 133:11291712

    Article  Google Scholar 

  34. Hassan QMA, Sultan HA, Bakr H, Hussein HF, Emshary CA (2022) Laser-induced nonlinearities in a polymer solution. Optik 271:170111 (18 pp)

    Article  CAS  Google Scholar 

  35. Bahae MS, Said AA (1989) E.W. Van Stryland, high sensitivity single beam n2 measurements. Opt Lett 14:955–957

    Article  Google Scholar 

  36. Henari D, Henart FZ (2016) Nonlinear optical spatial filtering for medical image processing. Open J Appl Sci 6:373–379

    CAS  Google Scholar 

  37. Turmeric (2007) The genus of curcumin. In: Ravindran RN, Nirmal Babu K, Sivaraman K (eds) Medical and aromatic plants –industrial profiles. CRC Press, Taylor and Francis group, London

    Google Scholar 

  38. Payton F, Sandusky P, Alworth WL (2007) NMR steady of the solution structure of curcumin. J Nat Prod 70:143–146

    Article  CAS  PubMed  Google Scholar 

  39. Shah CP, Mishra B, Kumar M, Pryadarsini KL, Bajaj PN (2008) Binding studies of curcumin to polyvinyl alcohol/polyvinyl alcohol hydrogel and its delivery to liposomes. Curr Sci 95:1426–1432

    CAS  Google Scholar 

  40. Zhao XZ, Jiang T, Wang L, Yang H, Zhang S, Zhon P (2010) Interaction of curcumin with Zn(II) and Cu(II) ions based on experiment and theoretical calculation. J Mol Struct 984:316–325

    Article  CAS  Google Scholar 

  41. Kanhathaisong S, Rattanaphani S, Rattanaphani V, Manyum T (2011) Aspectoscopic investigation of the complex of turmeric dye with copper (II) in aqueous solution. Suranaree J Sci Technol 18:159–165

    Google Scholar 

  42. Patra D, Barakat C (2011) Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye. Spectro Acta Part A Mol Biomol Spectro 79:1034–1041

    Article  CAS  Google Scholar 

  43. Mukerjee A, Ranjan TJ, Rau SI, Gryczynski JK, Cryczynski (2010) Spectroscopic properties of curcumin :orientation of transition moments. J Phys Chem B 114:12679–12684

    Article  CAS  PubMed  Google Scholar 

  44. Erez Y, Presiado I, Gepshtein R, Hupper D (2011) Temperature dependence of the fluorescence properties of curcumin. J Phys Chen A115:10962–10971

    Article  Google Scholar 

  45. Yasagh T, S S (2012) Ynthesis and characterization of some polyester derived from curcumin. J Thi-Qar Sci 3:141–148

    Google Scholar 

  46. Li Y, Zhu C, Kan J (2015) Preparation and characteristics of γ-Fe2o3/polyaniline-curcumin composites. Metals 5:2401–2412

    Article  Google Scholar 

  47. Subhan MA, Chandra Saha P, Uddin N, Sarker P (2017) Synthesis, structure, spectroscopy and photocatalytic studies of nano multi-metal oxide MgO∙ Al2O3∙ ZnO and MgO∙ Al2O3∙ ZnO-curcumin composite. Int J Nanosci Nanotechnol 13:69–82

    Google Scholar 

  48. Jasim KE, Cassidy S, Henari FZ, Dakhel AA (2017) Curcumin dye-sensitized solar cell. J Energy Power Eng 11:409–416

    CAS  Google Scholar 

  49. Ganesh T, Kim JH, Yoon SJ, Kil BH, Malder NN, Han JW, Han SH (2010) Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells. Mater Chem Phys 123:62–66

    Article  CAS  Google Scholar 

  50. Han S, Yang Y (2005) Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigm 64:157–161

    Article  CAS  Google Scholar 

  51. Abraham A, Samnel S, Mathew L (2018) Pharmacognostic evaluation of curcuma longa L. rhizome and standardization of its formulation by HPLC using curcumin as marker. Int J Pharaco Phys Chem Res 10:38–42

    Google Scholar 

  52. Ostheller ME, Abdelgawad AM, Balak-rishnau NK, Hassanin AH, Groten R, Seide G (2022) Curcumin and silver doping enhance the spinnability and antibacterial activity of melt-electrospun polybutylene succinate fibers. Nanomaterials 12:283pp24

    Article  Google Scholar 

  53. Priyadarsini KI (2014) The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19:20091–20112

    Article  PubMed  PubMed Central  Google Scholar 

  54. Patra D (2021) El kurdi, Curcumin as novel reducing and stabilizing agent for thegreen synthesis of metallic nanoparticles. Gree Chem Lett Rev 14:474–487

    Article  CAS  Google Scholar 

  55. Urosevic M, Nikolic L, Gaji I, Nikolic V, Dinic A, Miljkovic V (2022) Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics 11:135 (pp27)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ansari S, Jilani S, Abbasi H, Siraj MB, Hashimi A, Ahmed Y, Khatoon R (2020) AL Mohd. RiFas, curcuma longa: a treasure of medicinal properties. Cellmed 10:1–7

    Google Scholar 

  57. Motin D, Barthelemy S, Zini R, Labidalle S, Tillement JP (2001) Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein oxidation. FEBS Lett 495:131–136

    Article  Google Scholar 

  58. Ligeret H, Barthelemy S, Doulakas GB, Carrupt P-A, Tillement JP, Labidalle S, Morin D (2004) Fluoride cucumin derivatives: new mitochondrial uncoupling agents. FEBS Lett 569:37–42

    Article  CAS  PubMed  Google Scholar 

  59. Balasubramanyam M, Koteswari AA, Kumar RS, Monickaraj SF, Matheswari JU, Mohan V (2003) Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J Biosci 28:715–721

    Article  CAS  PubMed  Google Scholar 

  60. Barik A, Goel NK, Priyadasini KI, Mohan M (2004) Effect of deuterated solvents on the excited state photophysical properties of curcumin. J Photosci 11:95–99

    CAS  Google Scholar 

  61. Nardo L, Andreoni A, Bondani M, Masson M, Tennesen HH (2009) Studies in curcumin and curcuminoids. XXXIV. Photophysical properties of a symmetrical, non-substituted curcumin analogne. J Photochem Photobiol B Biol 97:77–86

    Article  CAS  Google Scholar 

  62. Indira K (2009) Photophysics, photochemistry and photobiology of curcumin: studies from organic solution, bio-mimetic and living cells. J Photochem Photobiol C Photochem Rev 10:81–95

    Article  Google Scholar 

  63. Kim SH, Gwon SY, Burkinshaw SM, Son YA (2010) The photo-and electrophysical properties of curcumin in aqueous solution. Spectrochim Acta Part A Mol Biomol Spectrosc 76:384–387

    Article  Google Scholar 

  64. Chaichau A, Knlchat S, Tumcharern G, Tutulani T, Tomapatanaget R (2010) Synthesis, photophysical properties, and cyanide detection in aqueous solution of BF2-curcumin dyes. Tetrahedron 66:6217–6223

    Article  Google Scholar 

  65. Herari FZ, Cassidy SN (2015) Onlinear optical studies of curcumin metal derivatives with cw laser. AIP Conf Proc 1653(10):020044–020010

    Google Scholar 

  66. Abdulwahab F, Henari FZ, Cassidy S, Winser K (2016) Synthesis of au,Ag, curcumin An/Ag, and Au-Ag nanoparticles and their nonlinear refractive index properties. J Nanomat 2016:5356404 (7pp)

    Article  Google Scholar 

  67. Margar SN, Sekar N (2016) Nonlinear optical properties of curcumin: solvatochromism-based approach and computational study. Mol Phys 14:1867–1879

    Article  Google Scholar 

  68. Sakashi PNK, Swain BC, Tripathy U (2020) Analyzing nonlinear trends in curcumin. A comparative study. Opt Las Technol 121:1058226

    Google Scholar 

  69. Elias RS, Hassan QMA, Sultan HA, Al-Asadi AS, Saeed BA, Emshary CA (2018) Thermal nonlinearities for three curcuminoids measured by diffraction ring patterns and Z-scan under visible cw laser illumination. Opt Las Technol 107:131–141

    Article  Google Scholar 

  70. Sultan HA, Hassan QMA, Al-Asadi AS, Elias RS, Bakr H, Saeed BA, Emshary CA (2018) far-field diffraction patterns and optical limiting properties of bisdemethoxy curcumin solution under cw laser illuminations. Opt Mat 85:500–509

    Article  CAS  Google Scholar 

  71. Jebur JH, Hassan QMA, Al-Mudhaffer MF, Al-Asadi AS, Elias, RS, Saeed BA, Emshary CA (2020) The gamma radiation effect on the surface morphology and optical properties of alphamethyl curcumin: PMMA film. Phys Scr 95:045804 (10pp)

    Article  CAS  Google Scholar 

  72. Saeed BA, Hassan QMA, Emshary CA, Sultan HA, Elias RS (2020) The nonlinear optical properties of two dihydropyridones derived from curcumin. Spectrochim Acta Part A: Mol Biomol Spectrosc 240:118622 (14 pp)

    Article  CAS  Google Scholar 

  73. Alsalim TA, Saeed BA, Elias RS, Aboo HS, Titinchi SJ (2013) Synthesis and electronic properties of altgl –and alkyloxy-curcuminoids. Eur J  Chem 4

  74. El-Fadl AA, Mohamad GA, El-Moiz AB, Rashad MO (2005) Ptical constants of Zn1 – xLi xO films prepared by chemical bath deposition technique. Phys B 366:44–54

    Article  Google Scholar 

  75. Gaussian 09 RE01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT

  76. Balasubramanian K (2006) Molecular orbital basis for yellow curry spice curcumin’s prevention of Alzheimer’s disease. J Agric Food Chem 54:3512–3520

    Article  CAS  PubMed  Google Scholar 

  77. Adhikary R, Mukherjee P, Kee TW, Petric JW (2009) Excited-state intramolecular hydrogen atom transfer and solvation dynamics of the medicinal pigment curcumin. J Phys Chem B 113:5255–5261

    Article  CAS  PubMed  Google Scholar 

  78. Sun Y-M, Zhang HY, Chen D-Z, Liu C-B (2002) Theoretical elucidation on the antioxidant mechanism of Curcumin: a DFT Study Org. Lett 4:2909–2911

    CAS  Google Scholar 

  79. Kolev TM, Velcheva EA, Stamboliyska BA, Spiteller MD (2005) FT and experimental studies of the structure and vibrational spectra of curcumin. Inter J Quant Chem 102:1069–1079

    Article  CAS  Google Scholar 

  80. Mahmood A, Khan S, Rana UA, Tahir MH (2019) Red shifting of absorption maxima of phenothiazine-based dyes by incorporating electron-deficient thiadiazole derivatives as p-spacer. Arab J Chem 12:1447–1453

    Article  CAS  Google Scholar 

  81. Khalid M, Khan MU, Shafiq I, Hussain R, Mahmood K, Hussain A, Jawaria R, Hussain A, Imran M, Assiri MA, Ali A, Fayyaz ur Rehman M, Sun K, Li Y (2021) NLO potential exploration for D–π–A heterocyclic organic compounds by incorporation of various π-linkers and acceptor units. Arab J Chem 14:103295

    Article  CAS  Google Scholar 

  82. Khalid M, Ali A, Adeel M, Din ZU, Tahir MN, Rodrigues-Filho E, Iqbal J, Khan MU (2020) Facile preparation, characterization, SC-XRD and DFT/DTDFT study of diversely functionalized unsymmetrical bis-aryl-α, β-unsaturated ketone derivatives. J Mol Struct 1206:127755

    Article  Google Scholar 

  83. Khalid M, Ali A, Din ZU, Tahir MN, Morais SFA, Braga AAC, Akhtar MN, Imran M, Rodrigues-Filho E (2021) β-Hydroxy carbonyl compounds via aldol reaction: single crystal investigation and quantum chemical exploration for the unveiling of supramolecular behavior. J Mol Struct 1241:130650

    Article  CAS  Google Scholar 

  84. Mahmood A, Abdullah MI, Nazar MF (2014) Quantum chemical designing of novel organic non-linear optical compounds. Bull Korean Chem Soc 35:1391–1396

    Article  CAS  Google Scholar 

  85. Michels L, Richter A, Chellappan RK, Røst HI, Behsen A, Wells KH, Leal L, Santan V, Blawid R, Silva GJ, Cooil SP, Wells JW, Blawid S (2021) Electronic and structural properties of the natural dyes curcumin, bixin and indigo. RSC Adv 11:14169–14177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ogusu K, Kohtani Y, H (1996) Laser-induced diffraction rings from an absorbing solution. Opt Rev 3:232–234

    Article  CAS  Google Scholar 

  87. Cuppo FL, Neto AM, Gomez SL, Palffy-Muhoray P (2002) Thermal-lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals. J Opt Soc Am B 19:1342–1348

    Article  CAS  Google Scholar 

  88. Sendhil K, Vijayan C, Kothiyal MP (2006) Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin. Opt Las Tech 38,:512–515

    Article  CAS  Google Scholar 

  89. Karimzadeh R (2012) Spatial self-phase modulation of a laser beam propagation through liquids with self-induced natural convection flow. J Opt 14(9):095701

    Article  Google Scholar 

  90. Henaria FZ, Cassidy S (2015) Nonlinear optical studies of curcumin metal derivatives with cw, laser AIP Conference Proceedings 1653:020044

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

“Alaa M. Al-Roumy and F. A. Al-Saymari participated in the characterization and analysis of the results, H. A. Sultan and Qusay M.A. Hassan wrote the software program and manuscript, Rita S. Elias and Tahseen A. Alsalim prepared the compound, Bahjat A. Saeed wrote the manuscript, C. A. Emshary wrote the main manuscript text – review & editing and M. A. Mahdi prepared Fig. 1.“

Corresponding author

Correspondence to Qusay M.A. Hassan.

Ethics declarations

Ethics Approval and Consent to Participate

The authors declare that their commitment to ethics related to his work and they have designed the experiments, collected and analyzed the data, and written the manuscript.

Consent for Publication

The authors declare their consent of publication.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Roumy, A.M., Al-Saymari, F.A., Sultan, H.A. et al. Nonlinear Optical Properties and All Optical Switching of Curcumin Derivatives. J Fluoresc 34, 283–303 (2024). https://doi.org/10.1007/s10895-023-03257-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03257-5

Keywords

PACS Number(s)

Navigation