Skip to main content
Log in

Investigation of Solvent Effect and H-Bonding on Spectroscopic Properties of 1-(3-Amino-6-(2,5-dichlorothiophen-3-yl)-4-phenylfuro[2,3-b]Pyridin-2-yl) Ethenone: Experimental and Computational Study

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

A Correction to this article was published on 14 June 2023

This article has been updated

Abstract

The furo[2,3-b]pyridine moiety is an important scaffold for many biologically active compounds, therefore, the spectral data of the derivative 1-(3-Amino-6-(2,5-dichlorothiophen-3-yl)-4-phenylfuro[2,3-b]pyridin-2-yl) ethenone (FP1) were investigated. Analysis of absorption-pH profile and Förster cycle of FP1 revealed that its excited state is more acidic than its ground state (\(p{{K}_{a}}^{*}\) < \(p{K}_{a}\)). The main fluorescence emission band of FP1 at 480 nm (in hexane) is shifted to longer wavelengths with increasing polarities of solvents. Linear Lippert’s plot and linear correlation between bands maxima and Camlet-Taft parameter, α, of the protic solvents indicated efficient intramolecular charge transfer and noticeable H-bonding. Moreover, the disappearance of the absorption band of FP1 at 385 nm in water, along with the noticeable red shift and quenching of the emission band, and the lower lifetime, relative to nonaqueous solvents, indicate the interruption of the furo[2,3-b]pyridine aromatic moiety. In addition, results from the Time Dependent Density Functional Theory (TDDFT) and Molecular Mechanic (MM) calculations were in agreement with experimentally determined spectra of FP1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

“Not applicable”.

Change history

References

  1. -Abdel-Rahman AAH, Shaban AKF, Nassar IF, EL-Kady DS, Ismail NSM, Mahmoud SF, Awad HM, El-Sayed WA (2021) Discovery of New Pyrazolopyridine, Furopyridine, and pyridine derivatives as CDK2 inhibitors: design, synthesis, Docking Studies, and anti-proliferative activity. Molecules 26:3923. https://doi.org/10.3390/molecules26133923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. -Němec V, Hylsová M, Maier L, Flegel J, Sievers S, Ziegler S, Schroeder M, Berger BT, Chaikuad A, Valčá¼°ková B, Uldrijan S, Drápela S, Souček K, Waldmann H, Knapp S, Paruch K (2019) Furo[3,2-b]pyridine: a Privileged Scaffold for highly selective kinase inhibitors and effective modulators of the hedgehog pathway. Angew Chem Int Ed 58(4):1062–1066. https://doi.org/10.1002/anie.201810312

    Article  CAS  Google Scholar 

  3. -Kumar RN, Poornachandra Y, Nagender P, Mallareddy G, Kumar NR, Ranjithreddy P, Kumar CG, Narsaiah B (2016) Synthesis of novel trifluoromethyl substituted furo[2,3-b]pyridine and pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine derivatives as potential anticancer agents. Eur J Med Chem 108:68–78. https://doi.org/10.1016/j.ejmech.2015.11.007

    Article  CAS  Google Scholar 

  4. -Ibrahim MM, AlRefai M, Azmi MN, Osman H, Abu Bakar MH, Geyer A (2019) Synthesis, characterization and cytotoxicity of new nicotinonitriles and their furo[2,3-b]pyridine derivatives. J Iran CHEM SOC 16:715–722. https://doi.org/10.1007/s13738-018-1549-y

    Article  CAS  Google Scholar 

  5. -Němec V, Maier L, Berger BT, Chaikuad A, Drápela S, Souček K, Knapp S, Paruch K (2021) Highly selective inhibitors of protein kinases CLK and HIPK with the furo[3,2-b]pyridine core. Eur J Med Chem 215:113299. https://doi.org/10.1016/j.ejmech.2021.113299

    Article  CAS  PubMed  Google Scholar 

  6. -Fumagalli F, de Melo SMG, Ribeiro CM, Cristina Solcia M, Rogério Pavan F, da Silva Emery F (2019) Exploiting the furo[2,3-b]pyridine core against multidrug-resistant Mycobacterium tuberculosis. Bioorg Med Chem Lett 29(8):974–977. https://doi.org/10.1016/j.bmcl.2019.02.019

    Article  CAS  PubMed  Google Scholar 

  7. -Al-Refai M, Ibrahim M, Al-Fawwaz A, Geyer A (2018) Synthesis and characterization of new 4-aryl-2-(2-oxopropoxy)-6-(2,5- dichlorothiophene)nicotinonitrile and their furo[2,3-b]pyridine derivatives: Assessment of antioxidant and biological activity. Eur J Chem 9(4):375–381. https://doi.org/10.5155/eurjchem.9.4.375-381.1792

    Article  CAS  Google Scholar 

  8. -Abramenko PI, Zhiryakov VG, Ponomareva TK (1976) Polymethine dyes – 4-substituted furo [2,3-b]- and selenopheno[2,3-b]pyridine derivatives. Chem Heterocycl Compd 12:52–56. https://doi.org/10.1007/BF00473913

    Article  Google Scholar 

  9. -Chartoire A, Comoy C, Fort Y (2008) Furo[3,2-b]pyridine: a convenient unit for the synthesis of polyheterocycles. Tetrahedron 64(48):10867–10873. https://doi.org/10.1016/j.tet.2008.09.008

    Article  CAS  Google Scholar 

  10. -Lee CW, Lee JY (2013) Highly electron deficient pyrido[3ʼ,2ʼ:4,5]furo- [2,3-b]pyridine as a core structure of a triplet host material for high efficiency green phosphorescent organic light-emitting diodes. Chem Commun 49:6185–6187. https://doi.org/10.1039/C3CC41605D

    Article  CAS  Google Scholar 

  11. -Zhang L, Liu Y, Li X, Guo Y, Jiang Z, Jiao T, Yang J (2021) Synthesis of a new amino-furopyridine-based compound as a Novel fluorescent pH Sensor in Aqueous Solution. ACS Omega 6(7):4800–4806. https://doi.org/10.1021/acsomega.0c05734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. -Xie H, Shao J, Yan Z, Ding J (2019) Furo[3,2-c]pyridine-Based Iridium Complex containing two methoxy groups for efficient solution-processed phosphorescent OLEDs. Asian J Org Chem 8(1):185–190. https://doi.org/10.1002/ajoc.201800657

    Article  CAS  Google Scholar 

  13. -(a) Ghanem R, Yousef F, Abu Awwad O Effect of pH and β -cyclodextrin on the photophysical properties of lamotrigine. Turk J Chem 42(2): 247–256., Ghanem R, Baker H, Seif MA, Al-Qawasmeh RA, Mataneh AA, Al-Gharabli SI (2010) Photochemical Transformation of Colchicine: A Kinetic Study. J Solution Chem 39(4): 441–456., Ghanem R (2015) Chemical Oxidation of Phthalmic Drug Timolol by Peroxodisulfate. Chem Sci Int J 8(3):1–14. https://doi.org/10.9734/ACSJ/2015/18782 (d), Ghanem R, Baker H, Al-Khazalah A, Matani A (2018) (2016) Spectroscopic and photophysical properties of terbutaline. JJC 11(3): 183–194

  14. -Dennington R, Keith TA, Millam JM (2016) GaussView, Version 6. Semichem Inc., Shawnee Mission, KS, USA

    Google Scholar 

  15. -Frisch MJ, Trucks GW, Schlegel HB et al (2016) Gaussian 16, Revision C.01; Gaussian. Inc., Wallingford CT, USA

    Google Scholar 

  16. -Becke AD (1993) A new mixing of Hartree-Fock and density-functional theories. J Chem Phys 98:1372–1377. https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  17. -Ibrahim MM, Al-Refai M, Al-Fawwaz A, Ali BF, Geyer A, Harms K, Marsch M, Krüger M, Osman H, Azmi MN (2018) Synthesis of fluorescent 1-(3-Amino-4-(4-(tert-butyl)phenyl) – 6-(p-tolyl) furo[2,3-b]pyridin-2-yl)ethan-1-one: Crystal structure, fluorescence behavior, antimicrobial and antioxidant studies. J Fluoresc 28:655–662. https://doi.org/10.1007/s10895-018-2227-2

    Article  CAS  PubMed  Google Scholar 

  18. -Lechel T, Dash J, Brüdgam I, Reißig HU (2008) Novel furo-pyridine derivatives via Sonogashira reactions of Functionalized Pyridines. Eur J Org Chem 3647–3655. https://doi.org/10.1002/ejoc.200800398

  19. -Grabowski ZR, Rubaszewska W (1977) Generalised Förster cycle. Thermodynamic and Extrathermodynamic Relationships between Proton transfer, Electron transfer and electronic excitation. J Chem Soc Faraday Trans 1:73: 11–28. https://doi.org/10.1039/F19777300011

    Article  Google Scholar 

  20. -Wierzchowski J (2014) Excited-state Proton transfer and phototautomerism in nucleobase and nucleoside analogs: a Mini-Review. Nucleosides Nucleotides Nucleic Acids 33(9):626–644. https://doi.org/10.1080/15257770.2014.913065

    Article  CAS  PubMed  Google Scholar 

  21. -Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH, Germany

    Book  Google Scholar 

  22. -Lippert VE (1955) Dipolmoment und Elektronenstruktur von angeregten Molekülen. Z Naturforschg 10a:541–545. https://doi.org/10.1515/zna-1955-0707

    Article  CAS  Google Scholar 

  23. -Mataga N, Kaifu Y, Kolzumi M (1956) Solvent Effects upon fluorescence Spectra and the dipolemoments of excited molecules. Bull Chem Soc Jpn 29(4):465–470. https://doi.org/10.1246/bcsj.29.465

    Article  CAS  Google Scholar 

  24. -Melavanki RM, Patil HD, Umapathy S, Kadadevarmath JS (2012) Solvatochromic Effect on the Photophysical Properties of two coumarins. J Fluoresc 22:137–144. https://doi.org/10.1007/s10895-011-0939-7

    Article  CAS  PubMed  Google Scholar 

  25. -Nishiyama K, Watanabe Y, Yoshida N, Hirata F (2012) Solvent Effects on Electronic Structures of Coumarin 153: parallel studies by means of Spectroscopy and RISM-SCF calculations. J Phys Soc Jpn 81:SA016. https://doi.org/10.1143/JPSJS.81SA.SA016

    Article  Google Scholar 

  26. -Mannekutla JR, Mulimani BG, Inamdar SR (2008) Solvent effect on absorption and fluorescence spectra of coumarin laser dyes: evaluation of ground and excited state dipole moments. Spectrochim Acta A Mol Biomol Spectrosc 69(2):419–426. https://doi.org/10.1016/j.saa.2007.04.016

    Article  CAS  PubMed  Google Scholar 

  27. -Marcus Y (1998) The Properties of Solvents - Wiley Series in Solution Chemistry: volume 4. John Wiley & Sons Ltd, England

    Google Scholar 

  28. -Kamlet MJ, Dickinson C, Taft RW (1981) Linear Solvation Energy Relationships. Solvent Effects on some fluorescence probes. Chem Phys Lett 77(1):69–72. https://doi.org/10.1016/0009-2614(81)85602-3

    Article  CAS  Google Scholar 

  29. -Kamlet MJ, Abboud JLM, Abraham MH, Taft RW (1983) Linear Solvation Energy Relationships. 23. A Comprehensive Collection of the Solvatochromic Parameters, π*, α, and β, and some methods for simplifying the generalized Solvatochromic equation. J Org Chem 48(17):2877–2887. https://doi.org/10.1021/jo00165a018

    Article  CAS  Google Scholar 

  30. -Chipem FAS, Mishra A, Krishnamoorthy G (2012) The role of hydrogen bonding in excited state intramolecular charge transfer. Phys Chem Chem Phys 14:8775–8790. https://doi.org/10.1039/C2CP23879A

    Article  CAS  PubMed  Google Scholar 

  31. -Chai S, Zhao GJ, Song P, Yang SQ, Liu JY, Han KL (2009) Reconsideration of the excited-state double proton transfer (ESDPT) in 2-aminopyridine/acid systems: role of the intermolecular hydrogen bonding in excited states. Phys Chem Chem Phys 11:4385–4390. https://doi.org/10.1039/B816589K

    Article  CAS  PubMed  Google Scholar 

  32. -Carmona C, Galán M, Angulo G, Muñoz MA, Guardado P, Balón M (2000) Ground and singlet excited state hydrogen bonding interactions of betacarbolines. Phys Chem Chem Phys 2:5076–5083. https://doi.org/10.1039/B005455K

    Article  CAS  Google Scholar 

  33. -Ihmels H, Schäfer K (2009) Excited-state acidity of the 8-hydroxyacridizinium ion—a water-soluble photoacid. Photochem Photobiol Sci 8:309–311. https://doi.org/10.1039/B816048A

    Article  CAS  PubMed  Google Scholar 

  34. -Yousef F, Ghanem R, Al-Sou’od K, Alsarhan A, Abuflaha R, Bodoor K, Assaf K, El-Barghouthi M (2021) Investigation of spectroscopic properties and molecular dynamics simulations of the interaction of mebendazole with β-cyclodextrin. J Iraan Chem Soc 18:75–86. https://doi.org/10.1007/s13738-020-02006-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Deanship of Scientific Research at Al Al-Bayt University for the financial support to perform this project (No. 5/2013/2014; Date 09/01/2014). All DFT calculations were conducted on the HPC facility at the Centre of Advance Material (CAM) at the University of Sharjah.

Funding

The authors gratefully acknowledge the Deanship of Scientific Research at Al Al-Bayt University for the financial support to perform this project (No. 5/2013/2014; Date 09/01/2014). All DFT calculations were conducted on the HPC facility at the Centre of Advance Material (CAM) at the University of Sharjah.

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions: Raed Ghanem and Fakhri Yousef designed the experiments and controlled the whole project and wrote the manuscript. Rasha K. Abufaha, Omar K. Almashaqbeh and Mahmoud AlRefai prepared the molecules and did the experimental part. Khaldoun Al-Sou’od, Ihsan A. Shahdi did the theoretical calculations. All authors reviewed the manuscript.

Corresponding author

Correspondence to Raed Ghanem.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors Ethics declarations.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuflaha, R.K., Yousef, F.O., Ghanem, R. et al. Investigation of Solvent Effect and H-Bonding on Spectroscopic Properties of 1-(3-Amino-6-(2,5-dichlorothiophen-3-yl)-4-phenylfuro[2,3-b]Pyridin-2-yl) Ethenone: Experimental and Computational Study. J Fluoresc 33, 2349–2360 (2023). https://doi.org/10.1007/s10895-023-03243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03243-x

Keywords

Navigation