Skip to main content
Log in

Fluorescein Based Three-channel Probe for the Selective and Sensitive Detection of CO32− Ions in an Aqueous Environment and Real Water Samples

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We have constructed a novel fluorescein-based fluorescent chemosensor, FL-In, functionalised with an indole moiety and capable of sensing by both the optical “turn-on” and electrochemical detection of carbonate ions (CO32−) in aqueous media. The probe exhibits excellent selectivity and a low detection limit (0.27 µM) regarding carbonate ions by a possible coordination and hydrolysis reaction mechanism. The developed probe successfully detected CO32− ions in different samples of water. Also, in a simple filter paper experiment, we documented its ability to allow the monitoring of CO32− with the naked eye.

Grpahical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Yes, our manuscript has data included as electronic supplementary material.

Code Availability

ChemDraw, Origin.

References

  1. Mizukami S, Nagano T, Urano Y et al (2002) A Fluorescent Anion Sensor That Works in Neutral Aqueous Solution for Bioanalytical Application. J Am Chem Soc 124:3920–3925. https://doi.org/10.1021/ja0175643

    Article  PubMed  CAS  Google Scholar 

  2. Gale PA (2010) Anion receptor chemistry: highlights from 2008 and 2009. Chem Soc Rev 39:3746–3771. https://doi.org/10.1039/C001871F

    Article  PubMed  CAS  Google Scholar 

  3. Gale PA, Busschaert N, Haynes CJE et al (2014) Anion receptor chemistry: highlights from 2011 and 2012. Chem Soc Rev 43:205–241. https://doi.org/10.1039/C3CS60316D

    Article  PubMed  CAS  Google Scholar 

  4. Busschaert N, Caltagirone C, Van Rossom W, Gale PA (2015) Applications of Supramolecular Anion Recognition. Chem Rev 115:8038–8155. https://doi.org/10.1021/acs.chemrev.5b00099

    Article  PubMed  CAS  Google Scholar 

  5. Santos-Figueroa LE, Moragues ME, Climent E et al (2013) Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chem Soc Rev 42:3489–3613. https://doi.org/10.1039/C3CS35429F

    Article  PubMed  CAS  Google Scholar 

  6. Martínez-Máñez R, Sancenón F (2003) Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chem Rev 103:4419–4476. https://doi.org/10.1021/cr010421e

    Article  PubMed  CAS  Google Scholar 

  7. Moragues ME, Martínez-Máñez R, Sancenón F (2011) Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chem Soc Rev 40:2593–2643. https://doi.org/10.1039/C0CS00015A

    Article  PubMed  CAS  Google Scholar 

  8. Dettori R, Donadio D (2020) Carbon dioxide, bicarbonate and carbonate ions in aqueous solutions under deep Earth conditions. Phys Chem Chem Phys 22:10717–10725. https://doi.org/10.1039/C9CP06904F

    Article  PubMed  CAS  Google Scholar 

  9. Toffolo MB, Ricci G, Caneve L, Kaplan-Ashiri I (2019) Luminescence reveals variations in local structural order of calcium carbonate polymorphs formed by different mechanisms. Sci Rep 9:16170. https://doi.org/10.1038/s41598-019-52587-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. England AH, Duffin AM, Schwartz CP et al (2011) On the hydration and hydrolysis of carbon dioxide. Chem Phys Lett 514:187–195. https://doi.org/10.1016/j.cplett.2011.08.063

  11. Marras G, Careddu N, Siotto G (2017) Filler calcium carbonate industrial applications: The way for enhancing and reusing marble slurry. Ital J Eng Geol Environ 2017:63–77. https://doi.org/10.4408/IJEGE.2017-02.S-07

    Article  Google Scholar 

  12. Hall C, Mason S, Cooke J (2017) Exploratory randomised controlled clinical study to evaluate the comparative efficacy of two occluding toothpastes – a 5% calcium sodium phosphosilicate toothpaste and an 8% arginine/calcium carbonate toothpaste – for the longer-term relief of dentine hyp. J Dent 60:36–43. https://doi.org/10.1016/j.jdent.2017.02.009

  13. Nishimoto Y, Namba K (2000) Investigation of texturization for crystalline silicon solar cells with sodium carbonate solutions. Sol Energy Mater Sol Cells 61:393–402. https://doi.org/10.1016/S0927-0248(99)00162-2

  14. Zhang Z, Dong Y-W, Wang G-W (2003) Efficient and Clean Aldol Condensation Catalyzed by Sodium Carbonate in Water. Chem Lett 32:966–967. https://doi.org/10.1246/cl.2003.966

    Article  CAS  Google Scholar 

  15. Tas AC (2009) Monodisperse Calcium Carbonate Microtablets Forming at 70°C in Prerefrigerated CaCl2–Gelatin–Urea Solutions. Int J Appl Ceram Technol 6:53–59. https://doi.org/10.1111/j.1744-7402.2008.02252.x

  16. Zougagh M, Rı́os A, Valcárcel M (2005) Direct determination of total carbonate salts in soil samples by continuous-flow piezoelectric detection. Talanta 65:29–35. https://doi.org/10.1016/j.talanta.2004.05.010

  17. Demichelis R, Raiteri P, Gale J et al (2011) Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat Commun 2:590. https://doi.org/10.1038/ncomms1604

    Article  PubMed  CAS  Google Scholar 

  18. Choi YS, Lvova L, Shin JH et al (2002) Determination of Oceanic Carbon Dioxide Using a Carbonate-Selective Electrode. Anal Chem 74:2435–2440. https://doi.org/10.1021/ac0108459

    Article  PubMed  CAS  Google Scholar 

  19. Jain AK, Gupta V, Raisoni JR (2006) Anion recognition using newly synthesized hydrogen bonding diamide receptors: PVC based sensors for carbonate. Electrochim Acta 52:951–957. https://doi.org/10.1016/j.electacta.2006.06.037

    Article  CAS  Google Scholar 

  20. Morris R, Ruff S, Gellert R et al (2010) Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover. Science 329:421–424. https://doi.org/10.1126/science.1189667

    Article  PubMed  CAS  Google Scholar 

  21. Singh A, Mohan M, R.Trivedi D (2019) Chemosensor Based on Hydrazinyl Pyridine for Selective Detection of F̄ Ion in Organic Media and CO32− Ions in Aqueous Media: Design, Synthesis, Characterization and Practical Application. ChemistrySelect 4:14120–14131. https://doi.org/10.1002/slct.201903670

  22. Liu W, Sun Z, Ranheimer M et al (1999) A flexible method of carbonate determination using an automatic gas analyzer equipped with an FTIR photoacoustic measurement chamber. Analyst 124:361–365. https://doi.org/10.1039/a808745h

    Article  CAS  Google Scholar 

  23. Lee HJ, Yoon IJ, Yoo CL et al (2000) Potentiometric Evaluation of Solvent Polymeric Carbonate-Selective Membranes Based on Molecular Tweezer-Type Neutral Carriers. Anal Chem 72:4694–4699. https://doi.org/10.1021/ac991212l

    Article  PubMed  CAS  Google Scholar 

  24. Little MJ, Wentzell PD (1995) Evaluation of acoustic emission as a means for carbonate determination. Anal Chim Acta 309:283–292. https://doi.org/10.1016/0003-2670(95)00075-B

  25. Amundson RG, Trask J, Pendall E (1988) A Rapid Method of Soil Carbonate Analysis Using Gas Chromatography. Soil Sci Soc Am J 52:880–883. https://doi.org/10.2136/sssaj1988.03615995005200030050x

  26. Karakuş E, Üçüncü M, Emrullahoğlu M (2016) Electrophilic Cyanate As a Recognition Motif for Reactive Sulfur Species: Selective Fluorescence Detection of H2S. Anal Chem 88:1039–1043. https://doi.org/10.1021/acs.analchem.5b04163

    Article  PubMed  CAS  Google Scholar 

  27. Işık M, Simsek Turan I, Dartar S (2019) Development of a water-soluble 3-formylBODIPY dye for fluorogenic sensing and cell imaging of sulfur dioxide derivatives. Tetrahedron Lett 60:1421–1425. https://doi.org/10.1016/j.tetlet.2019.04.039

  28. Hein R, Beer PD, Davis JJ (2020) Electrochemical Anion Sensing: Supramolecular Approaches. Chem Rev 120:1888–1935. https://doi.org/10.1021/acs.chemrev.9b00624

    Article  PubMed  CAS  Google Scholar 

  29. Li C, Liu L, Pan W et al (2019) Potential chiral fluorescent molecular probes based on an α, β-unsaturated ketone for anion detection. Sci Rep 9:18838. https://doi.org/10.1038/s41598-019-55421-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gupta VK, Singh AK, Gupta N (2014) Colorimetric sensor for cyanide and acetate ion using novel biologically active hydrazones. Sensors Actuators B Chem 204:125–135. https://doi.org/10.1016/j.snb.2014.07.029

  31. Kumar S, Luxami V, Kumar A (2008) Chromofluorescent Probes for Selective Detection of Fluoride and Acetate Ions. Org Lett 10:5549–5552. https://doi.org/10.1021/ol802352j

    Article  PubMed  CAS  Google Scholar 

  32. Zhou Y, Zhang J, Yoon J (2014) Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection Chem Rev 114. https://doi.org/10.1021/cr400352m

  33. Hou P, Chen S, Wang H et al (2013) An aqueous red emitting fluorescent fluoride sensing probe exhibiting a large Stokes shift and its application in cell imaging Chem Commun (Camb) 50 https://doi.org/10.1039/c3cc46630b

  34. Xu Z, Chen X, Kim HN, Yoon J (2010) Sensors for the optical detection of cyanide ion. Chem Soc Rev 39:127–137. https://doi.org/10.1039/B907368J

    Article  PubMed  CAS  Google Scholar 

  35. Kahriman N, Gün S, Gümrükçüoğlu A et al (2019) Naked Eye Detection of Carbonate, Hydroxide, and Cyanide Ions with 1,4′-Diazaflavonium Bromides: A Simple Spectrophotometric Method for Cyanide Determination. J Heterocycl Chem 56:2612–2618. https://doi.org/10.1002/jhet.3669

  36. Warwick C, Guerreiro A, Soares A (2013) Sensing and analysis of soluble phosphates in environmental samples: A review. Biosens Bioelectron 41:1–11. https://doi.org/10.1016/j.bios.2012.07.012

  37. Karuk Elmas ŞN, Ozen F, Koran K et al (2018) Selective and sensitive fluorescent and colorimetric chemosensor for detection of CO32- anions in aqueous solution and living cells. Talanta 188:614–622. https://doi.org/10.1016/j.talanta.2018.06.036

  38. Patra G, Ghorai A, Mondal J, Chandra R (2016) A reversible fluorescent-colorimetric chemosensor based on a novel Schiff base for visual detection of CO32- in aqueous solution. RSC Adv 6. https://doi.org/10.1039/C5RA24549D

  39. Saleem M, Choi N, Lee K (2015) Facile synthesis of an optical sensor for CO32- and HCO3- detection. Int J Environ Anal Chem 95. https://doi.org/10.1080/03067319.2015.1046056

  40. Karuk Elmas SN, Karagoz A, Aydin D et al (2021) Fabrication and sensing properties of phenolphthalein based colorimetric and turn–on fluorogenic probe for CO32− detection and its living–cell imaging application. Talanta 226:122166. https://doi.org/10.1016/j.talanta.2021.122166

  41. Verma S, Ravichandiran V, Ranjan N (2021) Selective, pH sensitive, “turn on” fluorescence sensing of carbonate ions by a benzimidazole. Spectrochim Acta Part A Mol Biomol Spectrosc 255:119624. https://doi.org/10.1016/j.saa.2021.119624

  42. Liv L, Yener M, Karakuş E (2021) A novel voltammetric method for the sensitive and selective determination of carbonate or bicarbonate ions by an azomethine-H probe. Anal Methods 13:1925–1929. https://doi.org/10.1039/D1AY00240F

    Article  PubMed  CAS  Google Scholar 

  43. Zheng H, Zhan X-Q, Bian Q-N, Zhang X-J (2013) Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors. Chem Commun 49:429–447. https://doi.org/10.1039/C2CC35997A

    Article  CAS  Google Scholar 

  44. Rajasekar M (2021) Recent development in fluorescein derivatives. J Mol Struct 1224:129085. https://doi.org/10.1016/j.molstruc.2020.129085

  45. Yan F, Fan K, Bai Z et al (2017) Fluorescein applications as fluorescent probes for the detection of analytes. TrAC Trends Anal Chem 97:15–35. https://doi.org/10.1016/j.trac.2017.08.013

  46. Karakuş E, Sayar M, Dartar S et al (2019) Fluorescein propiolate: a propiolate-decorated fluorescent probe with remarkable selectivity towards cysteine. Chem Commun 55:4937–4940. https://doi.org/10.1039/C9CC01774G

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge to Muhiddin ÇERGEL for NMR analysis.

Funding

The authors gratefully acknowledge TUBITAK National Metrology Institute (UME) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by E. Karakuş, E. Erdemir, G. Suna L. Liv, S. Gunduz and Ş. A. Can. The first draft of the manuscript was written by E. Karakuş and L. Liv.

Corresponding author

Correspondence to Erman Karakuş.

Ethics declarations

Conflict of Interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 649 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakuş, E., Erdemir, E., Suna, G. et al. Fluorescein Based Three-channel Probe for the Selective and Sensitive Detection of CO32− Ions in an Aqueous Environment and Real Water Samples. J Fluoresc 31, 1617–1625 (2021). https://doi.org/10.1007/s10895-021-02779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02779-0

Keywords

Navigation