Skip to main content
Log in

Quantum Dots Based Fluorescent Probe for the Selective Detection of Heavy Metal Ions

  • Review
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Heavy metal ions are one of the primary causes of environmental pollution. A marshal effect of heavy metal ions is a paramount ultimatum to humans, aquatic animals and other organisms present in nature. Multitude arrays of materials have been proclaimed for sensing of heavy metal ions and also many methodologies are applied for heavy metal ion sensing. Due to their toxicity and non-biodegradability, it is required to be perceived immediately prior to its manifestation of harmful effects. Quantum Dots (QDs) are zero-dimensional nanomaterial particles and owing to their distinctive optical and electronic properties, they are utilized as nanosensors. QDs have enriched fluorescence properties which includes broad excitation spectrum, narrow emission spectrum and photostability. QDs offer eclectic and sensitive detection of heavy metal ions due to presence of discrete capping agents and different functional groups present on the surface of the QDs. These capping layers and functional groups attune the sensing capability of the QDs, which leverages the interactions of QDs with various analytes by different mechanisms. This review, comprising of papers from 2011 to 2020,focuses on heavy metal ions sensing potential of various quantum dots and its applicability as a nanosensor for on field heavy metal ions detection in water.

Graphical abstract

Quantum Dots (QDs) based Heavy Metal Detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Mahurpawar M (2015) Effects of heavy metals on human health. Int J Reseacrh-Granthaalayah 2350(0530):2394–3629

    Google Scholar 

  2. Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem 2019:1–14. https://doi.org/10.1155/2019/6730305

    Article  CAS  Google Scholar 

  3. Yin H, Truskewycz A, Cole IS (2020) Quantum dot (QD)-based probes for multiplexed determination of heavy metal ions. Microchim. Acta 187(6). https://doi.org/10.1007/s00604-020-04297-5

  4. Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QMR (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 16(12):29592–29630. https://doi.org/10.3390/ijms161226183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Drahansky M et al. (2016) “We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1%,” Intech, vol. i, no. tourism, p. 13, doi: https://doi.org/10.5772/57353

  6. Ahamed MI, Kumar KS (2019) Studies on cu 2 SnS 3 quantum dots for O-band wavelength detection. Mater Sci Pol 37(2):225–229. https://doi.org/10.2478/msp-2019-0022

    Article  CAS  Google Scholar 

  7. DeVolder PS, Brown SL, Hesterberg D, Pandya K (2003) Metal bioavailability and speciation in a wetland tailings repository amended with biosolids compost, wood ash, and sulfate. J Environ Qual 32(3):851–864. https://doi.org/10.2134/jeq2003.8510

    Article  CAS  PubMed  Google Scholar 

  8. “Risk assessment of effects of cadmium on human health (IUPAC Technical Report),” Chem. Int., vol. 40, no. 2, pp. 43–43, 2018, doi: https://doi.org/10.1515/ci-2018-0226

  9. Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE (2018) Heavy metal mixture exposure and effects in developing nations: an update. Toxics 6(4):1–32. https://doi.org/10.3390/toxics6040065

    Article  CAS  Google Scholar 

  10. Jiwan S, Ajay K (2011) “Effects of Heavy Metals on Soil, Plants, Human Health and Aquatic Life,” Int. J. Res. Chem. Environ., vol. 1, no. January, pp. 15–21

  11. Rodríguez J, Mandalunis PM (2018) A review of metal exposure and its effects on bone health. J. Toxicol 2018:1–11. https://doi.org/10.1155/2018/4854152

    Article  CAS  Google Scholar 

  12. Menzies AC (1960) A study of atomic absorption spectroscopy. Anal Chem 32(8):898–904. https://doi.org/10.1021/ac60164a001

    Article  CAS  Google Scholar 

  13. Tonda-Turo C, Carmagnola I, Ciardelli G (2018) “Quartz crystal microbalance with dissipation monitoring: A powerful method to predict the in vivo behavior of bioengineered surfaces,” Front. Bioeng. Biotechnol., vol. 6, no. OCT, pp. 1–7, doi: https://doi.org/10.3389/fbioe.2018.00158

  14. Bakhtiar R (2013) Surface plasmon resonance spectroscopy: a versatile technique in a biochemist’s toolbox. J Chem Educ 90(2):203–209. https://doi.org/10.1021/ed200549g

    Article  CAS  Google Scholar 

  15. Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: A versatile technique for biosensor applications. Sensors (Switzerland) 15(5):10481–10510. https://doi.org/10.3390/s150510481

    Article  CAS  Google Scholar 

  16. Hieftje GM (2000) Atomic emission spectroscopy - it lasts and lasts and lasts. J Chem Educ 77(5):577–583. https://doi.org/10.1021/ed077p577

    Article  CAS  Google Scholar 

  17. Dickinson GW, Fassel VA (1969) Emission spectrometric detection of the elements at Thenanogram per milliliter level using induction-coupled plasma excitation. Anal Chem 41(8):1021–1024. https://doi.org/10.1021/ac60277a028

    Article  CAS  Google Scholar 

  18. Dahlquist RL, Knoll JW (1978) Inductively coupled plasma-atomic emission spectrometry: analysis of biological materials and soils for major, trace, and ultra-trace elements. Appl Spectrosc 32(1):1–30. https://doi.org/10.1366/000370278774331828

    Article  CAS  Google Scholar 

  19. Wilschefski SC, Baxter MR (2019) Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev. 40(3):115–133. https://doi.org/10.33176/aacb-19-00024

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dahimiwal SM, Thorat DB, Jain NP, Jadhav VB, Patil PB (2018) “A review on high performance liquid chromatography,” Int. J. Pharm. Res., vol. 5, no. 3, pp. 1–6, 2013, doi: https://doi.org/10.22214/ijraset.2018.2098

  21. Scholz F (2015) Voltammetric techniques of analysis: the essentials. ChemTexts 1(4):1–24. https://doi.org/10.1007/s40828-015-0016-y

    Article  CAS  Google Scholar 

  22. Batchelor-Mcauley C, Kätelhön E, Barnes EO, Compton RG, Laborda E, Molina A (2015) Recent advances in voltammetry. ChemistryOpen 4(3):224–260. https://doi.org/10.1002/open.201500042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. RICHES JPR (1948) An introduction to Polarographic methods and their application to the analysis of plant material. New Phytol 47(1):1–16. https://doi.org/10.1111/j.1469-8137.1948.tb05089.x

    Article  CAS  Google Scholar 

  24. Harstad RK, Johnson AC, Weisenberger MM, Bowser MT (2016) Capillary electrophoresis. Anal Chem 88(1):299–319. https://doi.org/10.1021/acs.analchem.5b04125

    Article  CAS  PubMed  Google Scholar 

  25. Voeten RLC, Ventouri IK, Haselberg R, Somsen GW (2018) Capillary electrophoresis: trends and recent advances. Anal Chem 90(3):1464–1481. https://doi.org/10.1021/acs.analchem.8b00015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anbu Durai W, Ramu A (2020) Hydrazone based dual – responsive colorimetric and Ratiometric Chemosensor for the detection of Cu2+/F− ions: DNA tracking, practical performance in environmental samples and tooth paste. J Fluoresc 30(2):275–289. https://doi.org/10.1007/s10895-020-02488-0

    Article  CAS  PubMed  Google Scholar 

  27. Anbu Durai W, Ramu A, Dhakshinamoorthy A (2021) A visual and Ratiometric Chemosensor using Thiophene functionalized Hydrazone for the selective sensing of Pb2+ and F− ions. J Fluoresc 31(2):465–474. https://doi.org/10.1007/s10895-020-02673-1

    Article  CAS  PubMed  Google Scholar 

  28. Li T, Senesi AJ, Lee B (2016) Small angle X-ray scattering for nanoparticle research. Chem Rev 116(18):11128–11180. https://doi.org/10.1021/acs.chemrev.5b00690

    Article  CAS  PubMed  Google Scholar 

  29. Pavel I, Moigno D, Cîntǎ S, Kiefer W (2002) Surface enhanced Raman spectroscopy and theoretical studies on 1,4-dihydrazinophthalazine sulfate. J Phys Chem A 106(14):3337–3344. https://doi.org/10.1021/jp011910l

    Article  CAS  Google Scholar 

  30. Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15(27–28):2657–2669. https://doi.org/10.1039/b501536g

    Article  CAS  Google Scholar 

  31. Senesi N, D’Orazio V (2004) Fluorescence Spectroscopy. Encycl Soils Environ 4(12):35–52. https://doi.org/10.1016/B0-12-348530-4/00211-3

    Article  Google Scholar 

  32. Valeur B, Berberan-Santos MN (2011) A brief history of fluorescence and phosphorescence before the emergence of quantum theory. J Chem Educ 88(6):731–738. https://doi.org/10.1021/ed100182h

    Article  CAS  Google Scholar 

  33. Drummen GPC (2012) Fluorescent probes and fluorescence (microscopy) techniques-illuminating biological and biomedical research. Molecules 17(12):14067–14090. https://doi.org/10.3390/molecules171214067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baryshnikov G, Minaev B, Ågren H (2017) Theory and calculation of the phosphorescence phenomenon. Chem Rev 117(9):6500–6537. https://doi.org/10.1021/acs.chemrev.7b00060

    Article  CAS  PubMed  Google Scholar 

  35. Bimberg D, Ledentsov NN, Grundmann M, Heitz R, Böhrer J, Ustinov VM, Kop'ev PS, Alferov ZI (1997) Luminescence properties of semiconductor quantum dots. J Lumin 72–74:34–37. https://doi.org/10.1016/S0022-2313(97)00084-7

    Article  Google Scholar 

  36. Yadav M, Chaudhary A (2014) “Quantum Dots : An Introduction,” Int. J. Res. Advent Technol., no. Special Issue, pp. 61–66

  37. Wu P, Zhao T, Wang S, Hou X (2014) Semicondutor quantum dots-based metal ion probes. Nanoscale 6(1):43–64. https://doi.org/10.1039/c3nr04628a

    Article  CAS  PubMed  Google Scholar 

  38. Subila KB, Kumar GK, Shivaprasad SM, Thomas KG (2013) “Luminescence properties of CdSe quantum dots: role of crystal structure and surface composition,”

  39. Zhao M, Zeng E (2015) “Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging,” doi: https://doi.org/10.1186/s11671-015-0873-8

  40. Jin S, Hu Y, Gu Z, Liu L, Wu H (2011) “Application of Quantum Dots in Biological Imaging,” vol. 2011, doi: https://doi.org/10.1155/2011/834139

  41. Manuscript A (2019) Luminescence properties and exciton dynamics of core–multi-shell semiconductor quantum dots leading to QLEDs. In: Dalton transactions. https://doi.org/10.1039/C9DT00989B

  42. Xu J, Jie X, Xie F, Yang H, Wei W, Xia Z (2018) Flavonoid moiety-incorporated carbon dots for ultrasensitive and highly selective fluorescence detection and removal of Pb2+. Nano Res 11(7):3648–3657. https://doi.org/10.1007/s12274-017-1931-6

    Article  CAS  Google Scholar 

  43. Pröfrock D, Prange A (2012) Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Appl Spectrosc 66(8):843–868. https://doi.org/10.1366/12-06681

    Article  CAS  PubMed  Google Scholar 

  44. Li M, Chen T, Gooding JJ, Liu J (2019) Review of carbon and graphene quantum dots for sensing. https://doi.org/10.1021/acssensors.9b00514

  45. De Acha N, Elosúa C, Corres JM, Arregui FJ (2019) “Fluorescent sensors for the detection of heavy metal ions in aqueous media,” Sensors (Switzerland), vol. 19, no. 3, doi: https://doi.org/10.3390/s19030599

  46. Vasudevan D, Gaddam RR, Trinchi A, Cole I (2015) “Core-shell quantum dots: Properties and applications,” J. Alloys Compd., vol. 636, no. February, pp. 395–404, doi: https://doi.org/10.1016/j.jallcom.2015.02.102

  47. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Princ Fluoresc Spectrosc:1–954. https://doi.org/10.1007/978-0-387-46312-4

  48. Malik P, Singh J, Kakkar R (2014) A review on CdSe quantum dots in sensing. Adv Mater Lett 5(11):612–628. https://doi.org/10.5185/amlett.2014.4562

    Article  CAS  Google Scholar 

  49. Peng C, Zhang Y, Qian Z, Xie Z (2018) “Fluorescence sensor based on glutathione capped CdTe QDs for detection of,” Food Sci. Hum. Wellness, no. 2017, pp. 1–6, doi: https://doi.org/10.1016/j.fshw.2017.12.001, 7, 71, 76

  50. Koner AL, Mishra PP, Jha S, Datta A (2005) The effect of ionic strength and surfactant on the dynamic quenching of 6-methoxyquinoline by halides. J Photochem Photobiol A Chem 170(1):21–26. https://doi.org/10.1016/j.jphotochem.2004.08.002

    Article  CAS  Google Scholar 

  51. Murphy CB, Zhang Y, Troxler T, Ferry V, Martin JJ, Jones WE (2004) Probing Förster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors. J Phys Chem B 108(5):1537–1543. https://doi.org/10.1021/jp0301406

    Article  CAS  Google Scholar 

  52. Liu YX, Summers MA, Scully SR, McGehee MD (2006) Resonance energy transfer from organic chromophores to fullerene molecules. J Appl Phys 99(9):1–4. https://doi.org/10.1063/1.2195890

    Article  CAS  Google Scholar 

  53. Mohammadzadeh A, Miri M (2019) Resonance fluorescence of a hybrid semiconductor-quantum-dot-metal-nanoparticle system driven by a bichromatic field. Phys Rev B 99(11):1–10. https://doi.org/10.1103/PhysRevB.99.115440

    Article  Google Scholar 

  54. Kaur J, Komal, Renu, Kumar V, Tikoo KB, Bansal S, Kaushik A, Singhal S (2020) Glutathione modified fluorescent CdS QDs synthesized using environmentally benign pathway for detection of mercury ions in aqueous phase. J Fluoresc 30(4):773–785. https://doi.org/10.1007/s10895-020-02545-8

    Article  CAS  PubMed  Google Scholar 

  55. You JQ, Yan D, He Y, Zhou JG, Ge YL, Song GW (2020) Polyethyleneimine-protected Ag2S quantum dots for near-infrared fluorescence-enhanced detection of trace-level Hg2+ in water. J Water Chem Technol 42(1):36–44. https://doi.org/10.3103/s1063455x20010105

    Article  Google Scholar 

  56. Zhang L, Li P, Feng L, Chen X, Jiang J, Zhang S, Zhang C, Zhang A, Chen G, Wang H (2020) Synergetic Ag2S and ZnS quantum dots as the sensitizer and recognition probe: A visible light-driven photoelectrochemical sensor for the ‘signal-on’ analysis of mercury (II). J. Hazard. Mater 387(2019):121715. https://doi.org/10.1016/j.jhazmat.2019.121715

    Article  CAS  PubMed  Google Scholar 

  57. Manna M, Roy S, Bhandari S, Chattopadhyay A (2020) A dual-emitting quantum dot complex nanoprobe for ratiometric and visual detection of Hg2+and Cu2+ions. J Mater Chem C 8(21):6972–6976. https://doi.org/10.1039/d0tc01788d

    Article  CAS  Google Scholar 

  58. Chu H, Yao D, Chen J, Yu M, Su L (2020) Double-Emission Ratiometric Fluorescent Sensors Composed of Rare-Earth-Doped ZnS Quantum Dots for Hg2+Detection. In: Double-emission Ratiometric fluorescent sensors composed of rare-earth-doped ZnS quantum dots for Hg2+ detection. ACS Omega. https://doi.org/10.1021/acsomega.0c00861

  59. Tanwar S, Sharma B, Kaur V, Sen T (2019) White light emission from a mixture of silicon quantum dots and gold nanoclusters and its utilities in sensing of mercury(ii) ions and thiol containing amino acid. RSC Adv 9(28):15997–16006. https://doi.org/10.1039/c9ra02012h

    Article  CAS  Google Scholar 

  60. Li DY, Wang SP, Azad F, Su SC (2019) “Single-step synthesis of polychromatic carbon quantum dots for macroscopic detection of Hg2+,” Ecotoxicol. Environ. Saf., vol. 190, no. October 2020, doi: https://doi.org/10.1016/j.ecoenv.2019.110141

  61. Wang J, Cao Y, Wang C, Chong H, Wang G (2019) 1,2-Dithioglycol functionalised carbon nitride quantum dots as a ‘turn–off’ fluorescent sensor for mercury ion detection. Int J Environ Anal Chem 99(8):796–807. https://doi.org/10.1080/03067319.2019.1611800

    Article  CAS  Google Scholar 

  62. Sahoo NK et al. (2019) “Eco-friendly synthesis of a highly fluorescent carbon dots from spider silk and its application towards Hg (II) ions detection in real sample and living cells,” Microchem. J., vol. 144, no. September 2018, pp. 479–488, doi: https://doi.org/10.1016/j.microc.2018.10.006

  63. Patir K, Gogoi SK (2018) Facile synthesis of Photoluminescent graphitic carbon nitride quantum dots for Hg2+ detection and room temperature phosphorescence. ACS Sustain Chem Eng 6(2):1732–1743. https://doi.org/10.1021/acssuschemeng.7b03008

    Article  CAS  Google Scholar 

  64. Liu Z, Mo Z, Liu N, Guo R, Niu X, Zhao P, Yang X (2020) One-pot synthesis of highly fluorescent boron and nitrogen co-doped graphene quantum dots for the highly sensitive and selective detection of mercury ions in aqueous media. J Photochem Photobiol A Chem 389:112255. https://doi.org/10.1016/j.jphotochem.2019.112255

    Article  CAS  Google Scholar 

  65. Askari F, Rahdar A, Dashti M, Trant JF (2020) “Detecting Mercury (II) and Thiocyanate Using ‘Turn-on’ Fluorescence of Graphene Quantum Dots,” J. Fluoresc., no. Ii, doi: https://doi.org/10.1007/s10895-020-02586-z, 30, 1181, 1187

  66. Wang C, Sun Y, Jin J, Xiong Z, Li D, Yao J, Liu Y (2018) Highly selective, rapid-functioning and sensitive fluorescent test paper based on graphene quantum dots for on-line detection of metal ions. Anal Methods 10(10):1163–1171. https://doi.org/10.1039/c7ay02995k

    Article  CAS  Google Scholar 

  67. M. Roushani, S. Kohzadi, S. Haghjoo, and A. Azadbakht, “Dual detection of Malation and Hg (II) by fluorescence switching of graphene quantum dots,” Environ. Nanotechnology, Monit. Manag., vol. 10, no. Ii, pp. 308–313, 2018, doi: https://doi.org/10.1016/j.enmm.2018.08.002

  68. Tadesse A, Hagos M, Ramadevi D, Basavaiah K, Belachew N (2020) Fluorescent-nitrogen-doped carbon quantum dots derived from Citrus lemon juice: green synthesis, mercury(II) ion sensing, and live cell imaging. ACS Omega 5(8):3889–3898. https://doi.org/10.1021/acsomega.9b03175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tang Y, Rao L, Li Z, Lu H, Yan C, Yu S, Ding X, Yu B (2018) Rapid synthesis of highly photoluminescent nitrogen-doped carbon quantum dots via a microreactor with foamy copper for the detection of Hg2+ ions. Sensors Actuators B Chem 258:637–647. https://doi.org/10.1016/j.snb.2017.11.140

    Article  CAS  Google Scholar 

  70. A. Ghanem, R. Al-Qassar Bani Al-Marjeh, and Y. Atassi, “Novel nitrogen-doped carbon dots prepared under microwave-irradiation for highly sensitive detection of mercury ions,” Heliyon, vol. 6, no. 4, p. e03750, 2020, doi: https://doi.org/10.1016/j.heliyon.2020.e03750

  71. Hama Aziz KH, Omer KM, Hamarawf RF (2019) Lowering the detection limit towards nanomolar mercury ion detection: via surface modification of N-doped carbon quantum dots. New J Chem 43(22):8677–8683. https://doi.org/10.1039/c9nj01333d

    Article  CAS  Google Scholar 

  72. Aderinto SO (2020) Fluorescent, colourimetric, and ratiometric probes based on diverse fluorophore motifs for mercuric(II) ion (Hg2+) sensing: highlights from 2011 to 2019, vol. 74, no. 10. Springer International Publishing

  73. Zhang L, Peng D, Liang RP, Qiu JD (2018) Graphene-based optical nanosensors for detection of heavy metal ions. TrAC - Trends Anal Chem 102:280–289. https://doi.org/10.1016/j.trac.2018.02.010

    Article  CAS  Google Scholar 

  74. Sharma P, Mehata MS (2020) Rapid sensing of lead metal ions in an aqueous medium by MoS2quantum dots fluorescence turn-off. Mater Res Bull 131:110978. https://doi.org/10.1016/j.materresbull.2020.110978

    Article  CAS  Google Scholar 

  75. Ahmad Mir I, Lu Q, Xie Y, Zhu L, Wang X (2019) “Detection of lead Using Thioglycolic Acid Capped ZnSe and ZnSe@ZnS core-shell Quantum Dots,” IOP Conf. Ser. Mater. Sci. Eng., vol. 490, no. 2, doi: https://doi.org/10.1088/1757-899X/490/2/022024

  76. Kaewprom C, Sricharoen P, Limchoowong N, Nuengmatcha P, Chanthai S (2019) Resonance light scattering sensor of the metal complex nanoparticles using diethyl dithiocarbamate doped graphene quantum dots for highly Pb(II)-sensitive detection in water sample. Spectrochim Acta - Part A Mol Biomol Spectrosc 207:79–87. https://doi.org/10.1016/j.saa.2018.09.002

    Article  CAS  Google Scholar 

  77. Bhamore JR, Park TJ, Kailasa SK (2020) “Glutathione-capped Syzygium cumini carbon dot-amalgamated agarose hydrogel film for naked-eye detection of heavy metal ions,” J. Anal. Sci. Technol., vol. 11, no. 1, doi: https://doi.org/10.1186/s40543-020-00208-8

  78. Elmizadeh H, Soleimani M, Faridbod F, Bardajee GR (2018) A sensitive nano-sensor based on synthetic ligand-coated CdTe quantum dots for rapid detection of Cr(III) ions in water and wastewater samples. Colloid Polym Sci 296(9):1581–1590. https://doi.org/10.1007/s00396-018-4375-y

    Article  CAS  Google Scholar 

  79. Parani S, Oluwafemi OS (2020) Selective and sensitive fluorescent nanoprobe based on AgInS2-ZnS quantum dots for the rapid detection of Cr (III) ions in the midst of interfering ions. Nanotechnology 31(39):395501. https://doi.org/10.1088/1361-6528/ab9c58

    Article  CAS  PubMed  Google Scholar 

  80. Hu Y, Zhang J, Li G, Xing H, Wu M (2020) Highly sensitive fluorescent determination of chromium(VI) by the encapsulation of cadmium telluride quantum dots (CdTe QDs) into Zeolitic Imidazolate Framework-8 (ZIF-8). Anal Lett 53(10):1639–1653. https://doi.org/10.1080/00032719.2020.1712724

    Article  CAS  Google Scholar 

  81. Khan MMR, Mitra T, Sahoo D (2020) Metal oxide QD based ultrasensitive microsphere fluorescent sensor for copper, chromium and iron ions in water. RSC Adv 10(16):9512–9524. https://doi.org/10.1039/c9ra09985a

    Article  CAS  Google Scholar 

  82. Wang Z, Yang Y, Zou T, Xing X, Zhao R, Wang Y (2020) “Novel method for the qualitative identification of chromium ions (III) using L-aspartic acid stabilized CdS quantum dots,” J. Phys. Chem. Solids, vol. 136, no. March 2019, p. 109160, doi: https://doi.org/10.1016/j.jpcs.2019.109160

  83. Mondal TK, Mondal S, Ghorai UK, Saha SK (2019) White light emitting lanthanide based carbon quantum dots as toxic Cr (VI) and pH sensor. J Colloid Interface Sci 553:177–185. https://doi.org/10.1016/j.jcis.2019.06.009

    Article  CAS  PubMed  Google Scholar 

  84. Hu Q, Li T, Gao L, Gong X, Rao S, Fang W, Gu R, Yang Z (2018) Ultrafast and energy-saving synthesis of nitrogen and chlorine co-doped carbon nanodots via neutralization heat for selective detection of Cr(VI) in aqueous phase. Sensors (Switzerland) 18(10):1–14. https://doi.org/10.3390/s18103416

    Article  CAS  Google Scholar 

  85. Wang C, Xu J, Li H, and Zhao W (2020) “Tunable multicolour S/N co-doped carbon quantum dots synthesized from waste foam and application to detection of Cr3+ ions,” Luminescence, pp. 0–1, doi: https://doi.org/10.1002/bio.3901, 35, 1373

  86. Ge Q, Kong WH, Liu XQ, Wang YM, Wang LF, Ma N, Li Y (2020) Hydroxylated graphene quantum dots as fluorescent probes for sensitive detection of metal ions. Int J Miner Metall Mater 27(1):91–99. https://doi.org/10.1007/s12613-019-1908-4

    Article  CAS  Google Scholar 

  87. Yin Y, Yang Q, Liu G (2020) “Ammonium pyrrolidine dithiocarbamate-modified CdTe/CdS quantum dots as a turn-on fluorescent sensor for detection of trace cadmium ions,” Sensors (Switzerland), vol. 20, no. 1, doi: https://doi.org/10.3390/s20010312

  88. Chen L et al. (2020) “Preparation of ‘ion-imprinting’ difunctional magnetic fluorescent nanohybrid and its application to detect cadmium ions,” Sensors (Switzerland), vol. 20, no. 4, doi: https://doi.org/10.3390/s20040995

  89. Zhou ZQ et al. (2020) “Rapid ratiometric detection of Cd2+ based on the formation of ZnSe/CdS quantum dots,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 228, no. xxxx, p. 117795, doi: https://doi.org/10.1016/j.saa.2019.117795

  90. Pandey SC, Kumar A, Sahu SK (2020) “Single Step Green Synthesis of Carbon Dots from Murraya koenigii leaves; A Unique Turn-off Fluorescent contrivance for Selective Sensing of Cd (II) ion,” J. Photochem. Photobiol. A Chem., vol. 400, no. May, p. 112620, doi: https://doi.org/10.1016/j.jphotochem.2020.112620

  91. Kayal S, Halder M (2019) A ZnS quantum dot-based super selective fluorescent chemosensor for soluble ppb-level total arsenic [as(iii) + as(v)] in aqueous media: direct assay utilizing aggregation-enhanced emission (AEE) for analytical application. Analyst 144(12):3710–3715. https://doi.org/10.1039/c9an00516a

    Article  CAS  PubMed  Google Scholar 

  92. Pathan S, Jalal M, Prasad S, Bose S (2019) Aggregation-induced enhanced photoluminescence in magnetic graphene oxide quantum dots as a fluorescence probe for as(III) sensing. J Mater Chem A 7(14):8510–8520. https://doi.org/10.1039/c8ta11358k

    Article  CAS  Google Scholar 

  93. Wu Y, Liu Y, Liu H, Liu B, Chen W, Xu L, Liu J (2020) Ion-mediated self-assembly of Cys-capped quantum dots for fluorescence detection of as( iii ) in water. Anal Methods 12:4229–4234. https://doi.org/10.1039/d0ay01144d

    Article  CAS  PubMed  Google Scholar 

  94. Singh A, Guleria A, Neogy S, Rath MC (2020) UV induced synthesis of starch capped CdSe quantum dots: functionalization with thiourea and application in sensing heavy metals ions in aqueous solution. Arab J Chem 13(1):3149–3158. https://doi.org/10.1016/j.arabjc.2018.09.006

    Article  CAS  Google Scholar 

  95. Zhou J et al., (2020)“ZnSe quantum dot based ion imprinting technology for fluorescence detecting cadmium and lead ions on a three-dimensional rotary paper-based microfluidic chip,” Sensors Actuators, B Chem., vol. 305, doi: https://doi.org/10.1016/j.snb.2019.127462

  96. Liu J et al. (2019) “Fluorescence characteristics of aqueous synthesized tin oxide quantum dots for the detection of heavy metal ions in contaminated water,” Nanomaterials, vol. 9, no. 9, doi: https://doi.org/10.3390/nano9091294

  97. Elfeky SA (2018) Facile sensor for heavy metals based on thiol-capped CdTe quantum dot. J Environ Anal Chem 05(01):1–5. https://doi.org/10.4172/2380-2391.1000232

    Article  Google Scholar 

  98. Baslak C (2019) Development of fluorescence-based optical sensors for detection of Cr(III) ions in water by using quantum nanocrystals. Res Chem Intermed 45(7):3633–3640. https://doi.org/10.1007/s11164-018-3615-6

    Article  CAS  Google Scholar 

  99. Radhakrishnan K, Sivanesan S, Panneerselvam P (2020) Turn-on fluorescence sensor based detection of heavy metal ion using carbon dots@graphitic-carbon nitride nanocomposite probe. J Photochem Photobiol A Chem 389:112204. https://doi.org/10.1016/j.jphotochem.2019.112204

    Article  CAS  Google Scholar 

  100. Chini MK, Kumar V, Javed A, Satapathi S (2019) Graphene quantum dots and carbon nano dots for the FRET based detection of heavy metal ions. Nano-Structures and Nano-Objects 19:100347. https://doi.org/10.1016/j.nanoso.2019.100347

    Article  CAS  Google Scholar 

  101. Raj SK, Yadav V, Bhadu GR, Patidar R, Kumar M, Kulshrestha V (2020) Synthesis of highly fluorescent and water soluble graphene quantum dots for detection of heavy metal ions in aqueous media. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-020-07891-5

  102. Yarur F, Macairan JR, Naccache R (2019) Ratiometric detection of heavy metal ions using fluorescent carbon dots. Environ Sci Nano 6(4):1121–1130. https://doi.org/10.1039/c8en01418c

    Article  CAS  Google Scholar 

  103. Buledi JA, Amin S, Haider SI, Bhanger MI, Solangi AR (2020) A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-020-07865-7

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution in the work.

Corresponding authors

Correspondence to Abhishekh Tiwari or Atul Chaskar.

Ethics declarations

Conflict of Interests

No conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biranje, A., Azmi, N., Tiwari, A. et al. Quantum Dots Based Fluorescent Probe for the Selective Detection of Heavy Metal Ions. J Fluoresc 31, 1241–1250 (2021). https://doi.org/10.1007/s10895-021-02755-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02755-8

Keywords

Navigation