Skip to main content
Log in

Fluorene Based Ferric Complex as Colorimetric and Fluorometric Probe for Highly Selective Detection of CN and S2− Anions

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A series of new chemosensor molecules bearing benzothiazole-, quinoline- and phthalazine-functionalized fluorene derivatives were synthesized and their complexation behaviors with Fe3+ and Sn2+ ions were investigated. The sensing abilities of their complexes towards both cyanide and sulfide anions were investigated by colorimetric and fluorometric techniques in detail. The sensing mechanism was investigated by Job’s and Scatchard plots evaluations, and also absorption/fluorescence titration experiments. Among the studied dye/metal binary systems, F-BT sensor to Fe3+ giving the detection limits of 3.1 µg has also displayed high selectivity and sensitivity towards CN and S2− anions, lead to a significant color change of the solution observable by the naked eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Liu W, Xu L, Sheng R, Wang P, Li H, Wu S (2007) A water-soluble “switching on” fluorescent Chemosensor of selectivity to Cd2+. Org Lett 9:3829–3832

    Article  CAS  PubMed  Google Scholar 

  2. Lee JH, Lim CS, Tian YS, Han JH, Cho BR (2010) A two-photon fluorescent probe for thiols in live cells and tissues. J Am Chem Soc 132:1216–1217

    Article  CAS  PubMed  Google Scholar 

  3. Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y et al (2007) A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging. J Am Chem Soc 129:10322–10323

    Article  CAS  PubMed  Google Scholar 

  4. Amani V, Safari N, Khavasi HR, Mirzaei P (2007) Iron(III) mixed-ligand complexes: Synthesis, characterization and crystal structure determination of iron(III) hetero-ligand complexes containing 1,10-phenanthroline, 2,2′-bipyridine, chloride and dimethyl sulfoxide, [Fe(phen)Cl3(DMSO)] and [Fe(bipy)Cl3(DMSO)]. Polyhedron 26:4908–4914

    Article  CAS  Google Scholar 

  5. Huang L, Hou F, Cheng J, Xi P, Chen F, Bai D et al (2012) Selective off-on fluorescent chemosensor for detection of Fe3+ ions in aqueous media. Org Biomol Chem 10:9634–9638

    Article  CAS  PubMed  Google Scholar 

  6. Lin W, Long L, Yuan L, Cao Z, Feng J (2009) A novel ratiometric fluorescent Fe3+ sensor based on a phenanthroimidazole chromophore. Anal Chim Acta 634:262–266

    Article  CAS  PubMed  Google Scholar 

  7. Wang H, Wang D, Wang Q, Li X, Schalley CA (2010) Nickel(II) and iron(III) selective off-on-type fluorescence probes based on perylene tetracarboxylic diimide. Org Biomol Chem 8:1017–1026

    Article  CAS  PubMed  Google Scholar 

  8. Wei P, Li D, Shi B, Wang Q, Huang F (2015) An anthracene-appended 2:3 copillar[5]arene: synthesis, computational studies, and application in highly selective fluorescence sensing for Fe(III) ions. Chem Commun 51:15169–15172

    Article  CAS  Google Scholar 

  9. Gao Y, Liu H, Liu Q, Wang W (2016) A novel colorimetric and OFF–ON fluorescent chemosensor based on fluorescein derivative for the detection of Fe3+ in aqueous solution and living cells. Tetrahedron Lett 57:1852–1855

    Article  CAS  Google Scholar 

  10. Tosonian S, Ruiz CJ, Rios A, Frias E, Eichler JF (2013) Synthesis, characterization, and stability of iron (III) complex ions possessing phenanthroline-based ligands. Open J Inorg Chem 3:7–13

    Article  PubMed  PubMed Central  Google Scholar 

  11. Viau CM, Guecheva TN, Sousa FG, Pungartnik C, Brendel M, Saffi J et al (2009) SnCl2-induced DNA damage and repair inhibition of MMS-caused lesions in V79 Chinese hamster fibroblasts. Arch Toxicol 83:769–775

    Article  CAS  PubMed  Google Scholar 

  12. de Mattos JC, Lage C, Dantas FJ, Moraes MO, Nunes AP, Bezerra RJ et al (2005) Interaction of stannous chloride leads to alteration in DNA, triphosphate nucleotides and isolated bases. Mol Cell Biochem 280:173–179

    Article  CAS  PubMed  Google Scholar 

  13. El-Demerdash FM, Yousef MI, Zoheir MA (2005) Stannous chloride induces alterations in enzyme activities, lipid peroxidation and histopathology in male rabbit: antioxidant role of vitamin C. Food Chem Toxicol 43:1743–1752

    Article  CAS  PubMed  Google Scholar 

  14. Pungartnik C, Viau C, Picada J, Caldeira-de-Araujo A, Henriques JA, Brendel M (2005) Genotoxicity of stannous chloride in yeast and bacteria. Mutat Res 583:146–157

    Article  CAS  PubMed  Google Scholar 

  15. Yeates AT, Corredor CC, Belfield KD, Huang Z-L, Belfield KD, Kajzar F (2006) Two-photon FRET-based 3D optical data storage in a composite polymer containing a photochromic diarylethene and a fluorene dye. Proc of SPIE 6330:63300A

    Article  CAS  Google Scholar 

  16. Belfield KD, Bondar MV, Przhonska OV, Schafer KJ (2004) Photochemical properties of (7-benzothiazol-2-yl-9,9-didecylfluoren-2-yl)diphenylamine under one- and two-photon excitation. J Photochem Photobiol A 162:569–574

    Article  CAS  Google Scholar 

  17. Belfield KD, Bondar MV, Przhonska OV, Schafer KJ (2004) Photostability of a series of two-photon absorbing fluorene derivatives. J Photochem Photobiol A 162:489–496

    Article  CAS  Google Scholar 

  18. Belfield KD, Bondar MV, Przhonska OV, Schafer KJ (2004) One- and two-photon photostability of 9,9-didecyl-2,7-bis(N,N-diphenylamino)fluorene. Photochem Photobiol S 3:138–141

    Article  CAS  Google Scholar 

  19. Yao S, Ahn H-Y, Wang X, Fu J, Van Stryland EW, Hagan DJ et al (2010) Donor-acceptor-donor fluorene derivatives for two-photon fluorescence lysosomal imaging. J Org Chem 75:3965–3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Erden İ, Erdoğmuş A, Demirhan N, Avcıata U (2008) Synthesis and characterization of a new fluorene ligand and its complexes with cobalt(II), copper(II), and ruthenium(II). Transit Metal Chem 33:439–442

    Article  CAS  Google Scholar 

  21. Kumbar M, Patil SA, Toragalmath SS, Jawoor SS, Shettar A (2020) Synthesis of novel metal (II) complexes tailored from 9-oxo-9H-fluorene-1-carboxylic acid via green protocol: DNA cleavage and anticancer studies. Inorganica Chim Acta 500:119210

    Article  CAS  Google Scholar 

  22. Zhu Q-Y, Lu W, Zhang Y, Bian G-Q, Gu J, Lin X-M et al (2008) Syntheses, crystal structures, and optical properties of metal complexes with 4′,5′-Diaza-9′-(4,5-disubstituted-1,3-dithiol-2-ylidene)fluorene ligands. Eur J Inorg Chem 2008:230–238

    Article  CAS  Google Scholar 

  23. Belfield KD, Bondar MV, Frazer A, Morales AR, Kachkovsky OD, Mikhailov IA et al (2010) Fluorene-based metal-ion sensing probe with high sensitivity to Zn2+ and efficient two-photon absorption. J Phys Chem B 114:9313–9321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaushik R, Sakla R, Ghosh A, Dama S, Mittal A, Jose DA (2019) Copper complex-embedded vesicular receptor for selective detection of cyanide ion and colorimetric monitoring of enzymatic reaction. ACS Appl Mater Inter 11:47587–47595

    Article  CAS  Google Scholar 

  25. Wang S-T, Chir J-L, Jhong Y, Wu A-T (2015) A turn-on fluorescent sensor for detection of cyanide in aqueous media. J Lumin 167:413–417

    Article  CAS  Google Scholar 

  26. Wang K, Ma L, Liu G, Cao D, Guan R, Liu Z (2016) Two fluorescence turn-on coumarin Schiff’s base chemosensors for cyanide anions. Dyes Pigments 126:104–109

    Article  CAS  Google Scholar 

  27. Wang L, Li L, Cao D (2016) Dual binding site assisted chromogenic and fluorogenic discrimination of fluoride and cyanide by boryl functionalized BODIPY. Sensor Actuat B Chem 228:347–359

    Article  CAS  Google Scholar 

  28. Gore AH, Vatre SB, Anbhule PV, Han SH, Patil SR, Kolekar GB (2013) Direct detection of sulfide ions S2- in aqueous media based on fluorescence quenching of functionalized CdS QDs at trace levels: analytical applications to environmental analysis. Analyst 138:1329–1333

    Article  CAS  PubMed  Google Scholar 

  29. Ryu S-J, Arifin E, Ha S-W, Lee J-K (2015) On-site colorimetric forensic sensor (II): quantitative detection of toxic S2- ion in blood plasma using metal-ion-modified silica powders. Bull Korean Chem Soc 36:2506–2510

    Article  CAS  Google Scholar 

  30. Paul A, Anbu S, Sharma G, Kuznetsov ML, Guedes da Silva MF, Koch B et al (2015) Intracellular detection of Cu2+ and S2- ions through a quinazoline functionalized benzimidazole-based new fluorogenic differential chemosensor. Dalton Trans 44:16953–16964

    Article  CAS  PubMed  Google Scholar 

  31. Pommerehne J, Vestweber H, Guss W, Mahrt RF, Bassler H, Porsch M et al (1995) Efficient 2-layer leds on a polymer blend basis. Adv Mater 7:551–554

    Article  CAS  Google Scholar 

  32. Facchiano A, Ragone R (2003) Modification of Job’s method for determining the stoichiometry of protein–protein complexes. Anal Biochem 313:170–172

    Article  CAS  PubMed  Google Scholar 

  33. Renny JS, Tomasevich LL, Tallmadge EH, Collum DB (2013) Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry. Angew Chem 52:11998–12013

    Article  CAS  Google Scholar 

  34. Dias FB, Pollock S, Hedley G, Pålsson L-O, Monkman A, Perepichka II et al (2006) Intramolecular charge transfer assisted by conformational changes in the excited state of fluorene-dibenzothiophene-S,S-dioxide co-oligomers. J Phys Chem B 110:19329–19339

    Article  CAS  PubMed  Google Scholar 

  35. Mysyk DD, Perepichka IF (1994) Fluorene compounds with intramolecular charge transfer containing dithiolylidene and selenathiolylidene substituents. Phosphorus Sulfur 95:527–529

    Article  Google Scholar 

  36. Perepichka IF, Perepichka D, Popov A, Perepichka I, Bryce RM, Goldenberg ML, et al (1998) Fluorene acceptors with intramolecular charge-transfer from 1,3-dithiole donor moieties: novel electron transport materials. Chem Commun 7:819–820

  37. Perepichka DF, Perepichka IF, Ivasenko O, Moore AJ, Bryce MR, Kuz’mina LG et al (2008) Combining high electron affinity and intramolecular charge transfer in 1,3-Dithiole–Nitrofluorene push–pull diads. Chem Eur J 14:2757–2770

    Article  CAS  PubMed  Google Scholar 

  38. Shigeta M, Morita M, Konishi G (2012) Selective formation of twisted intramolecular charge transfer and excimer emissions on 2,7-bis(4-diethylaminophenyl)-fluorenone by choice of solvent. Molecules 17:4452–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song S, Ju D, Li J, Li D, Wei Y, Dong C et al (2009) Synthesis and spectral characteristics of two novel intramolecular charge transfer fluorescent dyes. Talanta 77:1707–1714

    Article  CAS  PubMed  Google Scholar 

  40. Murphy RS, Moorlag CP, Green WH, Bohne C (1997) Photophysical characterization of fluorenone derivatives. J Photochem Photobiol A 110:123–129

    Article  CAS  Google Scholar 

  41. Jung HJ, Singh N, Jang DO (2008) Highly Fe3+ selective ratiometric fluorescent probe based on imine-linked benzimidazole. Tetrahedron Lett 49:2960–2964

    Article  CAS  Google Scholar 

  42. Singh N, Lee GW, Jang DO (2008) p-tert-Butylcalix[4]arene-based fluororeceptor for the recognition of dicarboxylates. Tetrahedron 64:1482–1486

    Article  CAS  Google Scholar 

  43. Singh N, Lee GW, Jang DO (2008) Highly selective imine-linked fluorescent chemosensor for adenine employing multiple hydrogen bonding. Tetrahedron Lett 49:44–47

    Article  CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  45. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Council of Manisa Celal Bayar University with the project number of 2018 − 126.

Funding

The funder has been acknowledged in the acknowledgement section.

Author information

Authors and Affiliations

Authors

Contributions

Gözde Murat Saltan and Haluk Dinçalp made substantial contribution while preparing the manuscript.

Corresponding author

Correspondence to Haluk Dinçalp.

Ethics declarations

Competing Interests

Not applicable. 

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Illustration of CT possibilities of F-PHT, F-BT, and F-QU dyes on their first HOMO and LUMO energy orbitals calculated by using density functional theory (DFT) [44] at the B3LYP/6-31G(d) [45] basis with the Gaussian 09 package (JPG 45 kb)

ESM 2

Cyclic voltammograms of F-PHT, F-BT, and F-QU dyes on glassy carbon working electrode in 0.1 M [TBA][PF6]/MeCN (Scan rate: 100 mV s─1) (JPG 523 kb)

ESM 3

Optical absorption changes of (a) F-PHT (2 × 10−5 M) and (b) F-QU (2 × 10−5 M in MeCN solution in the presence of different metal ions at saturated concentrations (JPG 717 kb)

ESM 4

(JPG 742 kb)

ESM 5

Changes in UV–vis absorption and fluorescence emission spectra (inset) of F-PHT at the initial concentrations of 2 × 10−5 M in MeCN solution by the titration upon addition of (a) Sn2+ (0 to 26.0 × 10−5 M), and (b) Fe3+ ions (0 to 42.0 × 10−6 M) indicated by arrow (λexc = 375 nm) (JPG 682 kb)

ESM 6

(JPG 738 kb)

ESM 7

Changes in UV–vis absorption and fluorescence emission spectra (inset) of F-QU at the initial concentrations of 2 × 10−5 M in MeCN solution by the titration upon addition of (a) Sn2+ (0 to 26.0 × 10−5 M), and (b) Fe3+ ions (0 to 42.0 × 10−6 M) indicated by arrow (λexc = 375 nm) (JPG 698 kb)

ESM 8

(JPG 682 kb)

ESM 9

Job’s plots for (a) F-PHT/Sn2+, (b) F-PHT/Fe3+, (c) F-QU/Sn2+, (d) F-BT/Sn2+, (e) F-BT/Fe3+ complex in MeCN solution (The total concentration of each was 2 × 10−5 M) (JPG 450 kb)

ESM 10

(JPG 431 kb)

ESM 11

(JPG 446 kb)

ESM 12

(JPG 471 kb)

ESM 13

(JPG 422 kb)

ESM 14

Scatchard plot for (a) F-PHT/Sn2+ (F−F0/[Sn2+] = −7.33 × 103(F − F0) + 6.5 × 107; R2: 0.89), and (b) F-BT/Sn2+ (F−F0/[Sn2+] = −2.11 × 103(F − F0) + 2.4 × 107; R2: 0.94) complex in MeCN solution (JPG 426 kb)

ESM 15

(JPG 406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murat Saltan, G., Dinçalp, H. Fluorene Based Ferric Complex as Colorimetric and Fluorometric Probe for Highly Selective Detection of CN and S2− Anions. J Fluoresc 31, 1311–1321 (2021). https://doi.org/10.1007/s10895-021-02737-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02737-w

Keywords

Navigation