Skip to main content
Log in

Does Variability Affect the Performance of Front-Face Fluorescence Spectroscopy? A Study Case on Commercial Lebanese Olive Oil

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The potential of front-face fluorescence spectroscopy coupled with chemometric techniques, namely multiple linear regression (MLR) applied on parallel factor (PARAFAC) scores and partial least squares (PLS), was tested on Lebanese olive oil samples possessing natural variability within their chemical parameters. Ninety-six olive oil samples have been harvested at different dates and from two seasons, processed using different extraction methods, collected from different altitudes and other factors that can increase the variability of the samples’ chemical composition. Fluorescence excitation-emission matrices (EEM) of the collected samples were measured, and the relationship between them and the chemical parameters was examined. Twenty-two MLR regression models based on PARAFAC scores were generated, the majority of which showed a good correlation coefficient (R > 0.7 for ten predicted variables). A second model using PLS on the unfolded EEM was also conducted to improve the regression and to assess if it can handle the variability in hand. However, similar results, with a slight improvement over the MLR model, were obtained. In a non-experimental design, such variability may hinder the potentials of front-face fluorescence; however average to good MLR and PLS models were obtained, predicting the Lebanese olive oil deterioration quality parameters and fatty acid content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. IDAL (2017) Olive oil fact book. Investment Development Authority of Lebanon. https://investinlebanon.gov.lb/Content/uploads/SideBlock/171011013554317~Olive%20Oil%20Factsheet%202017.pdf. Accessed 15 August 2019

  2. International Olive Council-IOC (2013) Trade standards applying to olive oils and olive-pomace oils. COI/T.15/NC No 3/REV. 7. Madrid, Spain

  3. Guzman E, Baeten V, Pierna JA, Garcia-Mesa JA (2015) Evaluation of the overall quality of olive oil using fluorescence spectroscopy. Food Chem 173:927–934. https://doi.org/10.1016/j.foodchem.2014.10.041

    Article  CAS  PubMed  Google Scholar 

  4. Lleo L, Hernandez-Sanchez N, Ammari F, Roger J-M (2016) 3D front-face fluorescence spectroscopy for characterization of olive oil. Agric Eng Int CIGR J 18:190–199

    Google Scholar 

  5. Sikorska E, Romaniuk A, Khmelinskii IV, Herance R, Bourdelande JL, Sikorski M, Kozioł J (2004) Characterization of edible oils using Total luminescence spectroscopy. J Fluoresc 14:25–35. https://doi.org/10.1023/B:JOFL.0000014656.75245.62

    Article  CAS  PubMed  Google Scholar 

  6. Locquet N, Aït‐Kaddour A, B.Y. Cordella C (2019) 3D fluorescence spectroscopy and its applications. In: Meyers R.A. (ed) Encyclopedia of analytical chemistry. Wiley, New York, pp 1–39. https://doi.org/10.1002/9780470027318.a9540

  7. Dankowska A, Małecka M (2009) Application of synchronous fluorescence spectroscopy for determination of extra virgin olive oil adulteration. Eur J Lipid Sci Technol 111:1233–1239. https://doi.org/10.1002/ejlt.200800295

    Article  CAS  Google Scholar 

  8. Sayago A, García-González DL, Morales MT, Aparicio R (2007) Detection of the presence of refined hazelnut oil in refined olive oil by fluorescence spectroscopy. J Agric Food Chem 55:2068–2071. https://doi.org/10.1021/jf061875l

    Article  CAS  PubMed  Google Scholar 

  9. Cheikhousman R, Zude M, Bouveresse DJ, Leger CL, Rutledge DN, Birlouez-Aragon I (2005) Fluorescence spectroscopy for monitoring deterioration of extra virgin olive oil during heating. Anal Bioanal Chem 382:1438–1443. https://doi.org/10.1007/s00216-005-3286-1

    Article  CAS  PubMed  Google Scholar 

  10. Poulli KI, Chantzos NV, Mousdis GA, Georgiou CA (2009) Synchronous fluorescence spectroscopy: tool for monitoring thermally stressed edible oils. J Agric Food Chem 57:8194–8201. https://doi.org/10.1021/jf902758d

    Article  CAS  PubMed  Google Scholar 

  11. Sikorska E, Khmelinskii IV, Sikorski M, Caponio F, Bilancia MT, Pasqualone A, Gomes T (2008) Fluorescence spectroscopy in monitoring of extra virgin olive oil during storage. Int J Food Sci Technol 43:52–61. https://doi.org/10.1111/j.1365-2621.2006.01384.x

    Article  CAS  Google Scholar 

  12. Tena N, Aparicio R, García-González DL (2012) Chemical changes of thermoxidized virgin olive oil determined by excitation–emission fluorescence spectroscopy (EEFS). Food Res Int 45:103–108. https://doi.org/10.1016/j.foodres.2011.10.015

    Article  CAS  Google Scholar 

  13. Tena N, García-González DL, Aparicio R (2009) Evaluation of virgin olive oil thermal deterioration by fluorescence spectroscopy. J Agric Food Chem 57:10505–10511. https://doi.org/10.1021/jf902009b

    Article  CAS  PubMed  Google Scholar 

  14. Dupuy N, Le Dréau Y, Ollivier D, Artaud J, Pinatel C, Kister J (2005) Origin of French virgin olive oil registered designation of origins predicted by Chemometric analysis of synchronous excitation−emission fluorescence spectra. J Agric Food Chem 53:9361–9368. https://doi.org/10.1021/jf051716m

    Article  CAS  PubMed  Google Scholar 

  15. Guimet F, Boqué R, Ferré J (2004) Cluster analysis applied to the exploratory analysis of commercial Spanish olive oils by means of excitation−emission fluorescence spectroscopy. J Agric Food Chem 52:6673–6679. https://doi.org/10.1021/jf040169m

    Article  CAS  PubMed  Google Scholar 

  16. Poulli KI, Mousdis GA, Georgiou CA (2005) Classification of edible and lampante virgin olive oil based on synchronous fluorescence and total luminescence spectroscopy. Anal Chim Acta 542:151–156. https://doi.org/10.1016/j.aca.2005.03.061

    Article  CAS  Google Scholar 

  17. Kyriakidis NB, Skarkalis P (2000) Fluorescence spectra measurement of olive oil and other vegetable oils. J AOAC Int 83:1435–1439

    Article  CAS  Google Scholar 

  18. Guimet F, Ferre J, Boque R, Vidal M, Garcia J (2005) Excitation-emission fluorescence spectroscopy combined with three-way methods of analysis as a complementary technique for olive oil characterization. J Agric Food Chem 53:9319–9328. https://doi.org/10.1021/jf051237n

    Article  CAS  PubMed  Google Scholar 

  19. Aparicio-Ruiz R, Tena N, Romero del Río I, Aparicio R, García-González DL, Morales M (2018) Predicting extra virgin olive oil freshness during storage by fluorescence spectroscopy. Grasas Aceites 68:219. https://doi.org/10.3989/gya.0332171

    Article  CAS  Google Scholar 

  20. Uceda M, Frías L (1975) Evolución del contenido graso del fruto y de la composición y calidad del aceite. In: International Olive Council (ed) Proceedings of II Seminario Oleić ola International. Córdoba, Spain, pp 25–46.

  21. Commision Implementing Regulation (EU) No 1348/2013 of 16 December 2013 amending Regulation (EEC) No 2568/91 on the characteristics of oliveoil and olive-residue oil and on the relevant methods of analysis. Official Journal of the European Union, L338, pp 31–67

  22. Montedoro G, Servili M, Baldioli M, Miniati E (1992) Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J Agric Food Chem 40:1571–1576. https://doi.org/10.1021/jf00021a019

    Article  CAS  Google Scholar 

  23. Isabel Minguez-Mosquera M, Rejano-Navarro L, Gandul-Rojas B, SanchezGomez AH, Garrido-Fernandez J (1991) Color-pigment correlation in virgin olive oil. J Am Oil Chem Soc 68:332–336. https://doi.org/10.1007/BF02657688

    Article  Google Scholar 

  24. International Olive Council-IOC (2017) Method of analysis, determination of fatty acid methyl esters by gas chromatography. COI/T.20/Doc. No. 33. Madrid, Spain

  25. Elcoroaristizabal S, Bro R, García JA, Alonso L (2015) PARAFAC models of fluorescence data with scattering: a comparative study. Chemom Intell Lab Syst 142:124–130. https://doi.org/10.1016/j.chemolab.2015.01.017

    Article  CAS  Google Scholar 

  26. Andersen CM, Bro R (2003) Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. J Chemom 17:200–215. https://doi.org/10.1002/cem.790

    Article  CAS  Google Scholar 

  27. Andersson CA, Bro R (2000) The N-way toolbox for MATLAB. Chemom Intell Lab Syst 52:1–4. https://doi.org/10.1016/S0169-7439(00)00071-X

    Article  CAS  Google Scholar 

  28. Harshman RA, Lundy ME (1994) PARAFAC: parallel factor analysis. Comput Stat Data Anal 18:39–72. https://doi.org/10.1016/0167-9473(94)90132-5

    Article  Google Scholar 

  29. Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of Chemometrics. Chemom Intell Lab Syst 58:109–130. https://doi.org/10.1016/S0169-7439(01)00155-1

    Article  CAS  Google Scholar 

  30. Martens H, Næs T (1984) Multivariate Calibration. In: Kowalski BR (ed) Chemometrics: mathematics and statistics in chemistry. Springer Netherlands, Dordrecht, pp 147–156

    Chapter  Google Scholar 

  31. Velasco J, Dobarganes C (2002) Oxidative stability of virgin olive oil. Eur J Lipid Sci Technol 104:661–676. https://doi.org/10.1002/1438-9312(200210)104:9/10<661::AID-EJLT661>3.0.CO;2-D

    Article  CAS  Google Scholar 

  32. Ayton J, Mailer RJ, Haigh A, Tronson D, Conlan D (2007) Quality and oxidative stability of australian olive oil according to harvest date and irrigation. J Food Lipids 14:138–156. https://doi.org/10.1111/j.1745-4522.2007.00076.x

    Article  CAS  Google Scholar 

  33. Durán Merás I, Domínguez Manzano J, Airado Rodríguez D, Muñoz de la Peña A (2018) Detection and quantification of extra virgin olive oil adulteration by means of autofluorescence excitation-emission profiles combined with multi-way classification. Talanta 178:751–762. https://doi.org/10.1016/j.talanta.2017.09.095

    Article  CAS  PubMed  Google Scholar 

  34. Ammari F, Cordella CBY, Boughanmi N, Rutledge DN (2012) Independent components analysis applied to 3D-front-face fluorescence spectra of edible oils to study the antioxidant effect of Nigella sativa L. extract on the thermal stability of heated oils. Chemom Intell Lab Syst 113:32–42. https://doi.org/10.1016/j.chemolab.2011.06.005

    Article  CAS  Google Scholar 

  35. Guimet F, Ferré J, Boqué R, Rius FX (2004) Application of unfold principal component analysis and parallel factor analysis to the exploratory analysis of olive oils by means of excitation–emission matrix fluorescence spectroscopy. Anal Chim Acta 515:75–85. https://doi.org/10.1016/j.aca.2004.01.008

    Article  CAS  Google Scholar 

  36. Sikorska E, Górecki T, Khmelinskii IV, Sikorski M, Kozioł J (2005) Classification of edible oils using synchronous scanning fluorescence spectroscopy. Food Chem 89:217–225. https://doi.org/10.1016/j.foodchem.2004.02.028

    Article  CAS  Google Scholar 

  37. Zandomeneghi M, Carbonaro L, Caffarata C (2005) Fluorescence of vegetable oils: olive oils. J Agric Food Chem 53:759–766. https://doi.org/10.1021/jf048742p

    Article  CAS  PubMed  Google Scholar 

  38. Zude-Sasse M (2009) Fluorescence. In: Zude M (ed) Optical monitoring of fresh and processed agricultural crops, 1st edn. CRC Press, Boca Ratan, pp 271–374

  39. Engelsen SB (1997) Explorative spectrometric evaluations of frying oil deterioration. J Am Oil Chem Soc 74:1495. https://doi.org/10.1007/s11746-997-0068-2

    Article  CAS  Google Scholar 

  40. Haaland DM, Thomas EV (1988) Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem 60:1193–1202. https://doi.org/10.1021/ac00162a020

    Article  CAS  Google Scholar 

  41. Gurdeniz G, Tokatli F, Ozen B (2007) Differentiation of mixtures of monovarietal olive oils by mid-infrared spectroscopy and chemometrics. Eur J Lipid Sci Technol 109:1194–1202. https://doi.org/10.1002/ejlt.200700087

    Article  CAS  Google Scholar 

  42. Put R, Vander Heyden Y (2007) Review on modelling aspects in reversed-phase liquid chromatographic quantitative structure-retention relationships. Anal Chim Acta 602:164–172. https://doi.org/10.1016/j.aca.2007.09.014

    Article  CAS  PubMed  Google Scholar 

  43. Alexopoulos EC (2010) Introduction to multivariate regression analysis. Hippokratia 14:23–28

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the National Council for Scientific Research of Lebanon (CNRS-L) and the Lebanese University (UL) for their financial support and for granting a doctoral fellowship to “Omar Dib”. We also would like to thank all olive farmers, whose assistance was essential to this study execution.

Funding

This research was funded by the National Council for Scientific Research of Lebanon [5/2106]; and the Lebanese University [504/12/CU].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Omar H. Dib, Jad Rizkalah, Rita Yaacoub, Hussein Dib, Nathalie Locquet, Luc Eveleigh, Christophe B. Y. Cordella, and Ali Bassal. The first draft of the manuscript was written by Omar H.Dib and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Omar H. Dib or Christophe B. Y. Cordella.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dib, O.H., Rizkalah, J., Yaacoub, R. et al. Does Variability Affect the Performance of Front-Face Fluorescence Spectroscopy? A Study Case on Commercial Lebanese Olive Oil. J Fluoresc 31, 107–118 (2021). https://doi.org/10.1007/s10895-020-02634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02634-8

Keywords

Navigation