Skip to main content
Log in

Application of Fluorescence Spectroscopy in Wheat Crop: Early Disease Detection and Associated Molecular Changes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The application of fluorescence spectroscopy combined with chemometrics was explored in the current study for the detection of stripe rust in wheat. The healthy and stripe rust leaves were collected from the disease screening nursery. The variations in the blue-green region and chlorophyll fluorescence intensity in leaves provides the basis for the detection of stripe rust infection. With the progress of disease, the variations in the synchronous fluorescence spectroscopy (SFS) spectrum was witnessed. SFS is an excellent tool for the simultaneous measurement of multiple compound samples, in case of plants it generates evidence regarding the occurrence of leaf fluorophore bands thus revealing the biochemical variations going on at different infection stages. Based on the results of the current study, it is inferred that p-coumaric acid has the highest intensity in healthy samples followed by the asymptomatic leaf samples, whereas the band intensity of α-tocopherol, sinapic acid, chlorogenic acid, ferulic acid, tannins, flavonoid, carotenoids and anthocyanins increases in the diseased and the asymptomatic samples accordingly to the rust infection. Principal component analysis (PCA) beautifully differentiated the healthy and the infected leaf samples. It is evident that the asymptomatic samples are grouped with the diseased samples or independently; indicating the start of disease infection, the decision that is hard to make with the visual assessments. The results of the current study suggest that the fluorescence emission and the SFS spectral signatures acquired for stripe rust could be utilized as fingerprints for early disease detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shewry PR, Hey SJ (2015) The contribution of wheat to human diet and health. Food Energy Secur 4:178–202. https://doi.org/10.1002/fes3.64

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lucas H (2012) Breakout session P1.1 National Food Security-the wheat initiative-an international research initiative for wheat improvement. In: Second Global Conference on Agricultural Research for Development, 29 Oct. – 1 Nov. Punta del Este, Uruguay. GCARD, pp 1–3

  3. Ali S, Rodriguez-Algaba J, Thach T et al (2017) Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Front Plant Sci 8:1–13. https://doi.org/10.3389/fpls.2017.01057 (article 1057).

    Article  CAS  Google Scholar 

  4. WSU (2019) Stripe Rust | Wheat & Small Grains | Washington State University. In: Wheat Small Grains, CAHNRS WSU Ext. http://smallgrains.wsu.edu/disease-resources/foliar-fungal-diseases/stripe-rust/. Accessed 28 Jun 2019

  5. Ali S, Leconte M, Rahman H et al (2014) A high virulence and pathotype diversity of Puccinia striiformis f.sp. tritici at its centre of diversity, the Himalayan region of Pakistan. Eur J Plant Pathol 140:275–290. https://doi.org/10.1007/s10658-014-0461-2

    Article  Google Scholar 

  6. Ali S, Gladieux P, Leconte M et al (2014) Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PLoS Pathog 10:e1003903. https://doi.org/10.1371/journal.ppat.1003903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ali S, Gladieux P, Rahman H et al (2014) Inferring the contribution of sexual reproduction, migration and off-season survival to the temporal maintenance of microbial populations: a case study on the wheat fungal pathogen Puccinia striiformis f.sp. tritici. Mol Ecol 23:603–617. https://doi.org/10.1111/mec.12629

    Article  CAS  PubMed  Google Scholar 

  8. Ranulfi AC, Cardinali MCB, Kubota TMK et al (2016) Laser-induced fluorescence spectroscopy applied to early diagnosis of citrus Huanglongbing. Biosyst Eng 144:133–144. https://doi.org/10.1016/j.biosystemseng.2016.02.010

    Article  Google Scholar 

  9. Atta BM, Saleem M, Ali H et al (2018) Chlorophyll as a biomarker for early disease diagnosis. Laser Phys 28:065607. https://doi.org/10.1088/1555-6611/aab94f

    Article  CAS  Google Scholar 

  10. Ullah R, Khan S, Bilal M et al (2016) Non-invasive assessment of mango ripening using fluorescence spectroscopy. Optik (Stuttg) 127:5186–5189. https://doi.org/10.1016/j.ijleo.2016.03.049

    Article  CAS  Google Scholar 

  11. Kolb CA, Wirth E, Kaiser WM et al (2006) Noninvasive evaluation of the degree of ripeness in grape berries (Vitis Vinifera L Cv. Bacchus and Silvaner) by chlorophyll fluorescence. J Agric Food Chem 54:299–305. https://doi.org/10.1021/jf052128b

    Article  CAS  PubMed  Google Scholar 

  12. Agati G, Pinelli P, Cortés Ebner S et al (2005) Nondestructive evaluation of anthocyanins in olive (Olea europaea) fruits by in situ chlorophyll fluorescence spectroscopy. J Agric Food Chem 53:1354–1363. https://doi.org/10.1021/jf048381d

    Article  CAS  PubMed  Google Scholar 

  13. Kumar P, Akhtar J, Kandan A et al (2016) Advance detection techniques of phytopathogenic fungi: current trends and future perspectives. In: Kumar P, Gupta VK, Tiwari AK, Kamle M (eds) Current trends in plant disease diagnostics and management practices, fungal biology. Springer International Publishing, Switzerland, pp 265–298

    Chapter  Google Scholar 

  14. Gouveia-neto AS, Silva-jr EA, Cunha PC et al (2011) Abiotic stress diagnosis via laser induced chlorophyll fluorescence analysis in plants for biofuel. In: Bernardes MADS (ed) Biofuel production-recent developments and prospects. InTech, Rijeka, pp 1–22

  15. Lüdeker W, Dahn HG, Günther KP (1996) Detection of fungal infection of plants by laser-induced fluorescence: an attempt to use remote sensing. J Plant Physiol 148:579–585. https://doi.org/10.1016/S0176-1617(96)80078-2

  16. Tartachnyk II, Rademacher I, Kühbauch W (2006) Distinguishing nitrogen deficiency and fungal infection of winter wheat by laser-induced fluorescence. Precis Agric 7:281–293. https://doi.org/10.1007/s11119-006-9008-7

    Article  Google Scholar 

  17. Kuckenberg J, Tartachnyk I, Noga G (2009) Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves. Precis Agric 10:34–44. https://doi.org/10.1007/s11119-008-9082-0

    Article  Google Scholar 

  18. Scholes JD, Rolfe SA (2009) Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performance: a phenomics perspective. Funct Plant Biol 36:880–892

    Article  Google Scholar 

  19. Bürling K, Hunsche M, Noga G (2010) Quantum yield of non-regulated energy dissipation in PSII (Y(NO)) for early detection of leaf rust (Puccinia triticina) infection in susceptible and resistant wheat (Triticum aestivum L.) cultivars. Precis Agric 11:703–716. https://doi.org/10.1007/s11119-010-9194-1

    Article  Google Scholar 

  20. Burling K, Hunsche M, Noga G et al (2011) UV-induced fluorescence spectra and lifetime determination for detection of leaf rust (Puccinia triticina) in susceptible and resistant wheat (Triticum aestivum) cultivars. Funct Plant Biol 38:337–345. https://doi.org/10.1071/FP10171

    Article  Google Scholar 

  21. Bürling K, Hunsche M, Noga G (2011) Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. J Plant Physiol 168:1641–1648. https://doi.org/10.1016/j.jplph.2011.03.016

    Article  CAS  PubMed  Google Scholar 

  22. Römer C, Bürling K, Hunsche M et al (2011) Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with Support Vector Machines. Comput Electron Agric 79:180–188. https://doi.org/10.1016/j.compag.2011.09.011

    Article  Google Scholar 

  23. Tischler YK, Thiessen E, Hartung E (2018) Early optical detection of infection with brown rust in winter wheat by chlorophyll fluorescence excitation spectra. Comput Electron Agric 146:77–85. https://doi.org/10.1016/j.compag.2018.01.026

    Article  Google Scholar 

  24. Firdous S (2018) Optical fluorescence diagnostic of wheat leaf rust with laser scanning confocal microscopy. Adv Crop Sci Technol 06:2–5. https://doi.org/10.4172/2329-8863.1000355

  25. Ullah R, Khan S, Ali H et al (2017) Identification of cow and buffalo milk based on Beta carotene and vitamin-A concentration using fluorescence spectroscopy. PLoS One 12:1–10. https://doi.org/10.1371/journal.pone.0178055

    Article  CAS  Google Scholar 

  26. Li Y-Q, Li X-Y, Shindi AAF et al (2012) Synchronous fluorescence spectroscopy and its applications in clinical analysis and food safety evaluation. In: Geddes CD (ed) Reviews in Fluorescence 2010. Springer, New York, pp 95–117

  27. Jolliffe IT (2002) Principal component analysis, second edition. Encycl Stat Behav Sci 30:487. https://doi.org/10.2307/1270093

    Article  Google Scholar 

  28. Lever J, Krzywinski M, Altman N (2017) Points of Significance: principal component analysis. Nat Methods 14:641–642. https://doi.org/10.1038/nmeth.4346

  29. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2:433–459. https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  30. Saleem K, Arshad HMI, Shokat S, Atta BM (2015) Appraisal of wheat germplasm for adult plant resistance against stripe rust. J Plant Prot Res 55:405–414. https://doi.org/10.1515/jppr-2015-0055

    Article  CAS  Google Scholar 

  31. Ali S, Shah SJA, Rahman H (2009) Multi-location variability in Pakistan for partial resistance in wheat to Puccinia striiformis f. sp. tritici. Phytopathol Mediterr 48:269–279. https://doi.org/10.14601/Phytopathol_Mediterr-2669

    Article  Google Scholar 

  32. Atta BM, Saleem M, Ali H et al (2019) Synchronous fluorescence spectroscopy for early diagnosis of citrus canker in citrus species. Laser Phys 29. https://doi.org/10.1088/1555-6611/ab2802

  33. Falco WF, Botero ER, Falcão EA et al (2011) In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles. J Photochem Photobiol A Chem 225:65–71. https://doi.org/10.1016/j.jphotochem.2011.09.027

    Article  CAS  Google Scholar 

  34. Lang M, Stober F, Lichtenthaler HK (1991) Fluorescence emission spectra of plant leaves and plant constituents. Radiat Environ Biophys 30:333–347. https://doi.org/10.1007/BF01210517

    Article  CAS  PubMed  Google Scholar 

  35. Buschmann C (2007) Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth Res 92:261–271

    Article  CAS  Google Scholar 

  36. Lagorio MG, Cordon GB, Iriel A (2015) Reviewing the relevance of fluorescence in biological systems. Photochem Photobiol Sci 14:1538–1559

    Article  CAS  Google Scholar 

  37. Donaldson L, Williams N (2018) Imaging and spectroscopy of natural fluorophores in pine needles. Plants 7:1–16. https://doi.org/10.3390/plants7010010

    Article  CAS  Google Scholar 

  38. Buschmann C, Langsdorf G, Lichtenthaler HK (2000) Imaging of the blue, green, and red fluorescence emission of plants: an overview. Photosynthetica 38:483–491. https://doi.org/10.1023/A:1012440903014

  39. Lenk S, Gádoros P, Kocsányi L, Barócsi A (2016) Teaching laser-induced fluorescence of plant leaves. Eur J Phys 37:064003. https://doi.org/10.1088/0143-0807/37/6/064003

    Article  Google Scholar 

  40. Stober F, Lichtenthaler HK (1992) Changes of the laser-induced blue, green and red fluorescence signatures during greening of etiolated leaves of wheat. J Plant Physiol 140:673–680. https://doi.org/10.1016/S0176-1617(11)81022-9

    Article  CAS  Google Scholar 

  41. Stober F, Lang M, Lichtenthaler HK (1994) Blue, green, and red fluorescence emission signatures of green, etiolated, and white leaves. Remote Sens Environ 47:65–71. https://doi.org/10.1016/0034-4257(94)90129-5

    Article  Google Scholar 

  42. Bürling K, Hunsche M, Noga G (2012) Presymptomatic detection of powdery mildew infection in winter wheat cultivars by laser-induced fluorescence. Appl Spectrosc 66:1411–1419. https://doi.org/10.1366/12-06614

    Article  CAS  PubMed  Google Scholar 

  43. Obledo-Vázquez EN, Cervantes-Martínez J (2017) Laser-induced fluorescence spectral analysis of papaya fruits at different stages of ripening. Appl Opt 56:1753–1756. https://doi.org/10.1364/AO.56.001753

    Article  PubMed  Google Scholar 

  44. Sikorska E, Khmelinskii IV, Sikorski M et al (2008) Fluorescence spectroscopy in monitoring of extra virgin olive oil during storage. Int J Food Sci Technol 43:52–61. https://doi.org/10.1111/j.1365-2621.2006.01384.x

    Article  CAS  Google Scholar 

  45. Keleş Y, Öncel I (2002) Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci 163:783–790. https://doi.org/10.1016/S0168-9452(02)00213-3

    Article  Google Scholar 

  46. Bartoli CG, Simontacchi M, Tambussi E et al (1999) Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. J Exp Bot 50:375–383

    Article  CAS  Google Scholar 

  47. Žilić S, Hadži-Tašković Šukalović V, Dodig D et al (2011) Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. J Cereal Sci 54:417–424. https://doi.org/10.1016/j.jcs.2011.08.006

    Article  CAS  Google Scholar 

  48. Moore J, Hao Z, Zhou K et al (2005) Carotenoid, tocopherol, phenolic acid, and antioxidant properties of Maryland-grown soft wheat. J Agric Food Chem 53:6649–6657. https://doi.org/10.1021/jf050481b

    Article  CAS  PubMed  Google Scholar 

  49. Fritsche S, Wang X, Jung C (2017) Recent advances in our understanding of tocopherol biosynthesis in plants: an overview of key genes, functions, and breeding of vitamin E improved crops. Antioxidants 6:99. https://doi.org/10.3390/antiox6040099

  50. DellaPenna D (2005) A decade of progress in understanding vitamin E synthesis in plants. In: Journal of Plant Physiology. Elsevier GmbH, pp 729–737

  51. El-Basyouni S, Towers GHN (1964) The phenolic acids in wheat: I. Changes during growth and development. Can J Biochem 42:203–210. https://doi.org/10.1139/o64-024

    Article  CAS  Google Scholar 

  52. Li L, Shewry PR, Ward JL (2008) Phenolic acids in wheat varieties in the healthgrain diversity screen. J Agric Food Chem 56:9732–9739. https://doi.org/10.1021/jf801069s

    Article  CAS  PubMed  Google Scholar 

  53. Lichtenthaler HK, Schweiger J (1998) Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J Plant Physiol 152:272–282. https://doi.org/10.1016/S0176-1617(98)80142-9

    Article  CAS  Google Scholar 

  54. Barron C, Surget A, Rouau X (2007) Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. J Cereal Sci 45:88–96. https://doi.org/10.1016/j.jcs.2006.07.004

    Article  CAS  Google Scholar 

  55. Southerton SG, Deverall BJ (1990) Changes in phenolic acid levels in wheat leaves expressing resistance to Puccinia recondita f. sp. tritici. Physiol Mol Plant Pathol 37:437–450. https://doi.org/10.1016/0885-5765(90)90035-V

    Article  CAS  Google Scholar 

  56. Meyer S, Cartelat A, Moya I, Cerovic ZG (2003) UV-induced blue-green and far-red fluorescence along wheat leaves: a potential signature of leaf ageing. J Exp Bot 54:757–769. https://doi.org/10.1093/jxb/erg063

  57. García-Plazaola JI, Fernández-Marín B, Duke SO et al (2015) Autofluorescence: biological functions and technical applications. Plant Sci 236:136–145

  58. Bürling K, Cerovic ZG, Cornic G et al (2013) Fluorescence-based sensing of drought-induced stress in the vegetative phase of four contrasting wheat genotypes. Environ Exp Bot 89:51–59. https://doi.org/10.1016/j.envexpbot.2013.01.003

    Article  Google Scholar 

  59. Estiarte M, Penuelas J, Kimball BA et al (1999) Free-air CO2 enrichment of wheat: leaf flavonoid concentration throughout the growth cycle. Physiol Plant 105:423–433. https://doi.org/10.1034/j.1399-3054.1999.105306.x

    Article  CAS  Google Scholar 

  60. Devadas R, Lamb DW, Backhouse D, Simpfendorfer S (2015) Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat. Precis Agric 16:477–491. https://doi.org/10.1007/s11119-015-9390-0

    Article  Google Scholar 

  61. Ogawa T, Inoue Y, Kitajima M, Shibata K (1973) Action spectra for biosynthesis of chlorophylls a and b and β-carotene. Photochem Photobiol 18:229–235. https://doi.org/10.1111/j.1751-1097.1973.tb06416.x

    Article  CAS  Google Scholar 

  62. Richaud D, Stange C, Gadaleta A et al (2018) Identification of Lycopene epsilon cyclase (LCYE) gene mutants to potentially increase β-carotene content in durum wheat (Triticum turgidum L.ssp. Durum) through TILLING. PLoS One 13:e0208948. https://doi.org/10.1371/journal.pone.0208948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tambussi EA, Casadesus J, Munné-Bosch S, Araus JL (2002) Photoprotection in water-stressed plants of durum wheat (Triticum turgidum var. durum): changes in chlorophyll fluorescence, spectral signature and photosynthetic pigments. Funct Plant Biol 29:35–44. https://doi.org/10.1071/PP01104

  64. Hussain A, Larsson H, Kuktaite R et al (2015) Carotenoid content in organically produced wheat: relevance for human nutritional health on consumption. Int J Environ Res Public Health 12:14068–14083. https://doi.org/10.3390/ijerph121114068

  65. Sun T, Yuan H, Cao H et al (2018) Carotenoid metabolism in plants: the role of plastids. Mol Plant 11:58–74. https://doi.org/10.1016/j.molp.2017.09.010

  66. Bauriegel E, Giebel A, Geyer M et al (2011) Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput Electron Agric 75:304–312. https://doi.org/10.1016/j.compag.2010.12.006

    Article  Google Scholar 

  67. Gitelson AA, Keydan GP, Merzlyak MN (2006) Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys Res Lett 33:L11402. https://doi.org/10.1029/2006GL026457

    Article  CAS  Google Scholar 

  68. Bauriegel E, Herppich W (2014) Hyperspectral and chlorophyll fluorescence imaging for early detection of plant diseases, with special reference to fusarium spec. infections on wheat. Agriculture 4:32–57. https://doi.org/10.3390/agriculture4010032

    Article  CAS  Google Scholar 

  69. Pandey JK, Gopal R (2011) Laser-induced chlorophyll fluorescence: a technique for detection of dimethoate effect on chlorophyll content and photosynthetic activity of wheat plant. J Fluoresc 21:785–791. https://doi.org/10.1007/s10895-010-0771-5

  70. Suseela V (2019) Potential roles of plant biochemistry in mediating ecosystem responses to warming and drought. In: Ecosystem Consequences of Soil Warming. Elsevier, pp 103–124

  71. Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN (2002) Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem Photobiol 75:272–281. https://doi.org/10.1562/0031-8655(2002)075<0272:ACCIPL>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  72. Merzlyak MN, Chivkunova OB (2000) Light-stress-induced pigment changes and evidence for anthocyanin photoprotection in apples. J Photochem Photobiol B Biol 55:155–163. https://doi.org/10.1016/S1011-1344(00)00042-7

    Article  CAS  Google Scholar 

  73. Leufen G, Noga G, Hunsche M et al (2014) Proximal sensing of plant-pathogen interactions in spring barley with three fluorescence techniques. Sensors 14:11135–11152. https://doi.org/10.3390/s140611135

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Greatly appreciate Zulfiqar Ali, Principal Scientist, NILOP for his assistance in preparing the samples for spectral analysis. We are also grateful to Rahat Ullah, Principal Scientist, NILOP for useful discussions and improving the draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babar Manzoor Atta.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atta, B.M., Saleem, M., Ali, H. et al. Application of Fluorescence Spectroscopy in Wheat Crop: Early Disease Detection and Associated Molecular Changes. J Fluoresc 30, 801–810 (2020). https://doi.org/10.1007/s10895-020-02561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02561-8

Keywords

Navigation