Skip to main content
Log in

Cation Specific Effects on the Domain-Domain Interaction of Heterogeneous Dimeric Protein Revealed by FRET Analysis

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Specific monovalent cation effects on the domain-domain interaction of heterogeneous dimeric protein were investigated using green fluorescent protein (GFP)-glutathione-s-transferase (GST) fusion protein as a model protein. Conjugating N-terminal of GST domain with a fluorescence probe Cyanine3, complementary increase and decrease of fluorescence intensities of Cyanine3 and GFP were recognized on the exclusive excitation of GFP and further the fluorescence decay of GFP was remarkably accelerated to show that an excellent Förster type of resonance excitation energy transfer (FRET) pair was constructed between GFP- and GST-domain. The spectral overlap integral and critical distance of the FRET pair were estimated to be 5.96×1013 M−1cm3 and 62.5 Å, respectively. The FRET rate and efficiency evaluated by fluorescence lifetime of the energy donor, GFP, were influenced by the monovalent cations included in the buffer solution to suggest that the domain-domain interactions of GFP-GST fusion protein would be susceptible to cation species and their concentrations. The order affecting the domain-domain interaction was estimated to be Li+>NH4+ >Na+>K+>Cs+, almost corresponding to the reverse Hofmeister series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Poiseuille JLM (1847) Recherches experimentales sur le mouvement des liquids de nature differente dans les tubes de tres petits diameters. Ann Chim Phys 21:76–109

    Google Scholar 

  2. Baldwin RL (1996) How Hofmeister ion interactions affect protein stability. Biophys J 71:2056–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sedlak E, Stagg L, Wittung-Stafshede P (2008) Role of cations in stability of acidic protein Desulfovibrio desulfuricans apoflavodoxin. Arch Biochem Biophys 474:128–135

    Article  CAS  PubMed  Google Scholar 

  4. Kumar A, Venkatesu P (2014) Does the stability of proteins in ionic liquids obey the Hofmeister series? Int J Biol Macromol 63:244–253

    Article  CAS  PubMed  Google Scholar 

  5. Majumdar R, Manikwar P, Hickey JM, Samra HS, Sathish HA, Bishop SM, Middaugh CR, Volkin DB, Weis DD (2013) Effects of salts from the Hofmeister series on the conformational stability, and aggregation propensity, and local flexibility of IgG1 monoclonal antibody. Biochemistry 52:3376–3389

    Article  CAS  PubMed  Google Scholar 

  6. Tadeo X, Pons M, Millet O (2007) Influence of the Hofmeister anions on protein stability as studied by thermal denaturation and chemical shift pertubation. Biochemistry 46:917–923

    Article  CAS  PubMed  Google Scholar 

  7. Pegram LM, Wendorff T, Erdmann R, Shkel I, Bellissimo D, Felitsky DJ, Record MT Jr (2010) Why Hofmeister effects of many salts favor protein folding but not DNA helix formation. Proc Natl Acad Sci USA 107:7716–7721

    Article  CAS  PubMed  Google Scholar 

  8. Pinna MC, Salis A, Monduzzi M, Ninham BW (2005) Hofmeister series: The hydrolytic activity of Aspergillus niger lipase depend on specific anion effects. J Phys Chem B 109:5406–5408

    Article  CAS  PubMed  Google Scholar 

  9. Kim HK, Tuite E, Norden B, Ninham BW (2001) Co-ion dependence of DNA nuclease actitivity suggests hydrophobic cavity as a potential source of activation energy. Eur Phys J E 4:411–417

    Article  CAS  Google Scholar 

  10. Milić D, Matković-Čalogović D, Demidkina TV, Kulikova VV, Sinitzina NI, Antson AA (2006) Structures of apo- and holo-tyrosine phenol-lyase reveal a catalytically critical closed conformation and suggest a mechanism for activation by K+ ions. Biochemistry 45:7544–7552

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gouvea IE, Judice WAS, Cezari MHS, Juliano MA, Juhasz T, Szeltner Z, Polgar L, Juliano L (2006) Kosmotropic salt activation and substrate specificity of Poliovirus protease 3C. Biochemistry 45:12083–12089

    Article  CAS  PubMed  Google Scholar 

  12. Zhao H (2005) Effect of ions other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J Mol Catal B Enzym 37:16–25

    Article  CAS  Google Scholar 

  13. Stepankova V, Paterova J, Damborsky J, Jungwirth P, Chaloupkova R, Heyda J (2013) Cation-specific effects on enzymatic catalysis driven by interactions at the tunnel mouth. J Phys Chem B 117:6394–6402

    Article  CAS  PubMed  Google Scholar 

  14. Gloss LM, Placek BJ (2002) The effect of salts on the stability of the H2A-H2B histone dimer. Biochemistry 41:14951–14959

    Article  CAS  PubMed  Google Scholar 

  15. Collins KD (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300–311

    Article  CAS  PubMed  Google Scholar 

  16. Nostro PL, Ninham BW, Nostro AL, Pesavento G, Faratoni L, Baglioni P (2005) Specific ion effects on the growth rates of Staphylococcus aureus and Pseudomonas aeruginosa. Phys Biol 2:1–7

    Article  PubMed  Google Scholar 

  17. Hofmeister F (1888) Zur lehre von der wirkung der salze. (About the science of the effect of salt.). Arch Exp Pathol Pharmakol 24:247–260

    Article  Google Scholar 

  18. Green AA (1932) Studies in the physical chemistry of the protein. J Biol Chem 95:47–66

    Google Scholar 

  19. Omta AW, Kropman MF, Woutersen S, Bakker HJ (2003) Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 301:347–349

    Article  CAS  PubMed  Google Scholar 

  20. Kherb J, Flores SC, Cremer PS (2012) Role of carboxylate side chains in the cation Hofmeister series. J Phys Chem B 116:7389–7397

    Article  CAS  PubMed  Google Scholar 

  21. Gurau MC, Lim S-M, Castellana ET, Albertorio F, Kataoka S, Cremer PS (2004) On the mechanism of the Hofmeister effect. J Am Chem Soc 126:10522–10523

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Furyk S, Bergbreiter DE, Cremer PS (2005) Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J Am Chem Soc 127:14505–14510

    Article  CAS  PubMed  Google Scholar 

  23. Ninham BW, Yaminsky V (1997) Ion binding and ion specificity: The Hofmeister effect and Onsager and Lifshitz theories. Langmuir 13:2097–2108

    Article  CAS  Google Scholar 

  24. Bostrom M, Williams DRM, Ninham BW (2001) Specific ion effects: Why DLVO theory fails for biologiy and collid systems. Phys Rev Lett 87:168103

    Article  CAS  PubMed  Google Scholar 

  25. Moreira LA, Bostrom M, Ninham BW, Biscaia EC, Tavares FW (2006) Hofmeister effects: Why protein charge, pH titration and protein precipitation depend on the choice of background salt solution. Colloids Surf A 282–283:457–463

    Article  Google Scholar 

  26. Sharrocks AD (1994) A T7 expression vector for producing N- and C-terminal fusion proteins with glutathione S-transferase. Gene 138:105–108

    Article  CAS  PubMed  Google Scholar 

  27. Fukunaga Y, Nishimoto E, Yamashita K, Otosu T, Yamashita S (2007) The partially unfold state of beta-momorcharin characterized with steady state and time-resolved fluorescence studies. J Biochem 141:9–18

    Article  CAS  PubMed  Google Scholar 

  28. Fukunaga Y, Nishimoto E, Otosu T, Murakami Y, Yamashita S (2008) The unfolding of α-momorcharin proceeds through the compact folded intermediate. J Biochem 144:457–466

    Article  CAS  PubMed  Google Scholar 

  29. Nishimoto E, Yamashita S, Szabo AG, Imoto T (1998) Internal motion of lysozyme studied by time-resolved fluorescence depolarization of tryptophan residues. Biochemistry 37:5599–5607

    Article  CAS  PubMed  Google Scholar 

  30. Yamashita S, Nishimoto E, Szabo AG, Yamasaki N (1996) Steady state and time-resolved fluorescence studies on the ligand-induced conformational change in an active lysozyme derivative, Kyn62-lysozyme. Biochemistry 35:531–537

    Article  CAS  PubMed  Google Scholar 

  31. Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys (Leipzig) 2:55–75

    Article  Google Scholar 

  32. McKinnon AE, Szabo AG, Miller DR (1977) The deconvolution of photoluminescence data. J Phys Chem 81:1564–1570

    Article  CAS  Google Scholar 

  33. Lakowicz JR (2006) Principles of fluorescence spectroscopy, Chap. 13, 3rd edn. Springer, New York

  34. Collins KD (2012) Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interaction? Biophys Chem 167:43–59

    Article  PubMed  Google Scholar 

  35. Zhang Y, Cremer PS (2010) Chemistry of Hofmeister anions and osmolytes. Annu Rev Phys Chem 61:63–83

    Article  CAS  PubMed  Google Scholar 

  36. Hirano A, Hamada H, Okuno T, Noguchi T, Higashibata H, Shiraki K (2007) Correlation between thermal aggregation and stability of lysozyme with salts described by molar surface tension increment: An exceptional propensity of ammonium salts as aggregation suppressor. Protein J 26:423–433

    Article  CAS  PubMed  Google Scholar 

  37. Collins KD (1997) Charge density-dependent strength of hydration and biological structure. Biophys J 72:65–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Collins KD (2006) Ion hydration: implications for cellular function, polyelectrolytes, and protein crystallization. Biophys Chem 119:271–281

    Article  CAS  PubMed  Google Scholar 

  39. Kato A, Katsuki A, Nishimoto E (2019) Specific monovalent cation effect on protein-protein interactions revealed by protein rotational diffusion analysis. Chem Phys Lett 730:89–94

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etsuko Nishimoto.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoyama, T., Kato, A. & Nishimoto, E. Cation Specific Effects on the Domain-Domain Interaction of Heterogeneous Dimeric Protein Revealed by FRET Analysis. J Fluoresc 30, 1121–1129 (2020). https://doi.org/10.1007/s10895-020-02558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02558-3

Keywords

Navigation