Skip to main content
Log in

Elucidation of Selectivity for Silver Ion Based on Metal-Induced H-Type Aggregation of Fluorescent Receptor

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In present work, a new substituted phthalonitrile derivative was prepared by the nucleophilic displacement reaction and then highly soluble zinc phthalocyanine (ZnPc) with four peripheral 1-hydroxyhexan-3-ylthio groups was synthesized by cyclotetramerization and characterized by FTIR, 1H and 13C NMRs spectroscopies, fluorescence and UV–vis measurements. The optical property and quantum yield of ZnPc were elucidated in mixed solvent of ethanol/water with varying compositions. The pH-dependent fluorescence and absorbance spectra of ZnPc in the absence and presence of Ag+ ions were obtained to elucidate the optimum pH value that is convenient for stable complex formation in predetermined mixture. A comparative study for recognition of Ag+ ion has been carried out to evaluate the effect of the solution parameters on selective sensing ability of ZnPc as a fluorescent receptor. Interference effect was investigated by spectrofluorometric titration based on fluorescence quenching of ZnPc upon addition of Ag+ ion in the presence of foreign metal ions. Stepwise complexation/decomplexation cycles with Na2S-titration by fluorescence quenching/enhancement were investigated to establish the reversible response rate and reusability of ZnPc toward Ag+ ions.

Selective determination of silver ion based on H-type aggregation of zinc phthalocyanine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahamed MEH, Mbianda XY, Mulaba-Bafubiandi AF, Marjanovic L (2013) Ion imprinted polymers for the selective extraction of silver(I) ions in aqueous media: kinetic modeling and isotherm studies. React Funct Polym 73(3):474–483. https://doi.org/10.1016/j.reactfunctpolym.2012.11.011

    Article  CAS  Google Scholar 

  2. Jacobson AR, McBride MB, Baveye P, Steenhuis TS (2005) Environmental factors determining the trace-level sorption of silver and thallium to soils. Sci Total Environ 345(1):191–205. https://doi.org/10.1016/j.scitotenv.2004.10.027

    Article  CAS  PubMed  Google Scholar 

  3. Saidur MR, Aziz ARA, Basirun WJ (2017) Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review. Biosens Bioelectron 90:125–139. https://doi.org/10.1016/j.bios.2016.11.039

    Article  CAS  PubMed  Google Scholar 

  4. Li H, Michael Siu KW, Guevremont R, Le Blanc JCY (1997) Complexes of silver(I) with peptides and proteins as produced in electrospray mass spectrometry. J Am Soc Mass Spectrom 8(8):781–792. https://doi.org/10.1016/S1044-0305(97)84130-X

    Article  CAS  Google Scholar 

  5. Martin S, Griswold W (2009) Human health effects of heavy metals. Environmental Science and Technology briefs for citizens 15:1–6

    Google Scholar 

  6. Panyala RN, Pena-Mendez ME, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6(3):117–129

    Article  CAS  Google Scholar 

  7. Hosoba M, Oshita K, Katarina RK, Takayanagi T, Oshima M, Motomizu S (2009) Synthesis of novel chitosan resin possessing histidine moiety and its application to the determination of trace silver by ICP-AES coupled with triplet automated-pretreatment system. Anal Chim Acta 639(1):51–56. https://doi.org/10.1016/j.aca.2009.02.050

    Article  CAS  PubMed  Google Scholar 

  8. Valverde F, Costas M, Pena F, Lavilla I, Bendicho C (2008) Determination of total silver and silver species in coastal seawater by inductively-coupled plasma mass spectrometry after batch sorption experiments with Chelex-100 resin. Chem Spec Bioavailab 20(4):217–226. https://doi.org/10.3184/095422908X381306

    Article  CAS  Google Scholar 

  9. Ghanei-Motlagh M, Fayazi M, Taher MA, Jalalinejad A (2016) Application of magnetic nanocomposite modified with a thiourea based ligand for the preconcentration and trace detection of silver(I) ions by electrothermal atomic absorption spectrometry. Chem Eng J 290:53–62. https://doi.org/10.1016/j.cej.2016.01.025

    Article  CAS  Google Scholar 

  10. Daşbaşı T, Saçmacı Ş, Şahan S, Kartal Ş, Ülgen A (2013) Synthesis, characterization and application of a new chelating resin for on-line separation, preconcentration and determination of Ag(I) by flame atomic absorption spectrometry. Talanta 103:1–7. https://doi.org/10.1016/j.talanta.2012.09.017

    Article  CAS  PubMed  Google Scholar 

  11. Sötebier CA, Weidner SM, Jakubowski N, Panne U, Bettmer J (2016) Separation and quantification of silver nanoparticles and silver ions using reversed phase high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry in combination with isotope dilution analysis. J Chromatogr A 1468:102–108. https://doi.org/10.1016/j.chroma.2016.09.028

    Article  CAS  PubMed  Google Scholar 

  12. Hanley TA, Saadawi R, Zhang P, Caruso JA, Landero-Figueroa J (2014) Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection. Spectrochim Acta, Part B 100:173–179. https://doi.org/10.1016/j.sab.2014.08.022

    Article  CAS  Google Scholar 

  13. Sánchez-Pomales G, Mudalige TK, Lim J-H, Linder SW (2013) Rapid determination of silver in Nanobased liquid dietary supplements using a portable X-ray fluorescence analyzer. J Agric Food Chem 61(30):7250–7257. https://doi.org/10.1021/jf402018t

    Article  CAS  PubMed  Google Scholar 

  14. Tashkhourian J, Javadi S, Ana FN (2011) Anodic stripping voltammetric determination of silver ion at a carbon paste electrode modified with carbon nanotubes. Microchim Acta 173(1):79–84. https://doi.org/10.1007/s00604-010-0528-5

    Article  CAS  Google Scholar 

  15. Afkhami A, Shirzadmehr A, Madrakian T, Bagheri H (2015) New nano-composite potentiometric sensor composed of graphene nanosheets/thionine/molecular wire for nanomolar detection of silver ion in various real samples. Talanta 131:548–555. https://doi.org/10.1016/j.talanta.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  16. Abdolmohammad-Zadeh H, Javan Z (2015) Silica-coated Mn3O4 nanoparticles coated with an ionic liquid for use in solid phase extraction of silver(I) ions prior to their determination by AAS. Microchim Acta 182(7):1447–1456. https://doi.org/10.1007/s00604-015-1468-x

    Article  CAS  Google Scholar 

  17. Rastegarzadeh S, Pourreza N, Larki A (2015) Determination of trace silver in water, wastewater and ore samples using dispersive liquid–liquid microextraction coupled with flame atomic absorption spectrometry. J Ind Eng Chem 24:297–301. https://doi.org/10.1016/j.jiec.2014.09.045

    Article  CAS  Google Scholar 

  18. Tavallali H, Yazdandoust S, Yazdandoust M (2010) Cloud point extraction for the Preconcentration of silver and palladium in real samples and determination by atomic absorption spectrometry. CLEAN – Soil, Air, Water 38(3):242–247. https://doi.org/10.1002/clen.200900207

    Article  CAS  Google Scholar 

  19. Rawa-Adkonis M, Wolska L, Przyjazny A, Namieśnik J (2006) Sources of errors associated with the determination of PAH and PCB Analytes in water samples. Anal Lett 39(11):2317–2331. https://doi.org/10.1080/00032710600755793

    Article  CAS  Google Scholar 

  20. Wong RCH, Lo P-C, Ng DKP (2019) Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coord Chem Rev 379:30–46. https://doi.org/10.1016/j.ccr.2017.10.006

    Article  CAS  Google Scholar 

  21. Gregory P (2000) Industrial applications of phthalocyanines. J Porphyrins Phthalocyanines 04(04):432–437. https://doi.org/10.1002/(SICI)1099-1409(200006/07)4:4<432::AID-JPP254>3.0.CO;2-N

    Article  CAS  Google Scholar 

  22. Urbani M, Ragoussi M-E, Nazeeruddin MK, Torres T (2019) Phthalocyanines for dye-sensitized solar cells. Coord Chem Rev 381:1–64. https://doi.org/10.1016/j.ccr.2018.10.007

    Article  CAS  Google Scholar 

  23. Kong S, Song Y, Bai L, Tang X, Meng F (2019) Supramolecular complexes based on liquid-crystalline polysiloxanes and copper phthalocyanine. Polym Int 68(3):377–384. https://doi.org/10.1002/pi.5720

    Article  CAS  Google Scholar 

  24. Choi J, Wagner P, Gambhir S, Jalili R, MacFarlane DR, Wallace GG, Officer DL (2019) Steric modification of a cobalt Phthalocyanine/Graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Letters 4(3):666–672. https://doi.org/10.1021/acsenergylett.8b02355

    Article  CAS  Google Scholar 

  25. Kuzyniak W, Ermilov EA, Atilla D, Gürek AG, Nitzsche B, Derkow K, Hoffmann B, Steinemann G, Ahsen V, Höpfner M (2016) Tetra-triethyleneoxysulfonyl substituted zinc phthalocyanine for photodynamic cancer therapy. Photodiagn Photodyn Ther 13:148–157. https://doi.org/10.1016/j.pdpdt.2015.07.001

    Article  CAS  Google Scholar 

  26. Kandaz M, Güney O, Senkal FB (2009) Fluorescent chemosensor for Ag(I) based on amplified fluorescence quenching of a new phthalocyanine bearing derivative of benzofuran. Polyhedron 28(14):3110–3114. https://doi.org/10.1016/j.poly.2009.06.058

    Article  CAS  Google Scholar 

  27. Çağlar Y, Saka ET, Alp H, Kantekin H, Ocak Ü, Ocak M (2016) A simple Spectrofluorimetric method based on quenching of a nickel(II)-Phthalocyanine complex to determine Iron (III). J Fluoresc 26(4):1381–1389. https://doi.org/10.1007/s10895-016-1829-9

    Article  CAS  PubMed  Google Scholar 

  28. Matshitse R, Nyokong T (2018) Singlet oxygen generating properties of different sizes of charged Graphene quantum dot Nanoconjugates with a positively charged Phthalocyanine. J Fluoresc 28(3):827–838. https://doi.org/10.1007/s10895-018-2247-y

    Article  CAS  PubMed  Google Scholar 

  29. Hanack M, Schneider T, Barthel M, Shirk JS, Flom SR, Pong RGS (2001) Indium phthalocyanines and naphthalocyanines for optical limiting. Coord Chem Rev 219-221:235–258. https://doi.org/10.1016/S0010-8545(01)00327-7

    Article  CAS  Google Scholar 

  30. Bıyıklıoğlu Z, Durmuş M, Kantekin H (2010) Synthesis, photophysical and photochemical properties of quinoline substituted zinc (II) phthalocyanines and their quaternized derivatives. J Photoch Photobio A 211(1):32–41. https://doi.org/10.1016/j.jphotochem.2010.01.018

    Article  CAS  Google Scholar 

  31. Nyokong T (2007) Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord Chem Rev 251(13):1707–1722. https://doi.org/10.1016/j.ccr.2006.11.011

    Article  CAS  Google Scholar 

  32. Uzumcu AT, Guney O, Okay O (2018) Monitoring the instant creation of a new fluorescent signal for evaluation of DNA conformation based on intercalation complex. J Fluoresc 28(6):1325–1332. https://doi.org/10.1007/s10895-018-2294-4

    Article  CAS  PubMed  Google Scholar 

  33. Günsel A, Bilgiçli AT, Kırbaç E, Güney S, Kandaz M (2015) Water soluble quarternizable gallium and indium phthalocyanines bearing quinoline 5-sulfonic acid: synthesis, aggregation, photophysical and electrochemical studies. J Photoch Photobio A 310:155–164. https://doi.org/10.1016/j.jphotochem.2015.05.018

    Article  CAS  Google Scholar 

  34. Raj MR, Margabandu R, Mangalaraja RV, Anandan S (2017) Influence of imide-substituents on the H-type aggregates of perylene diimides bearing cetyloxy side-chains at bay positions. Soft Matter 13(48):9179–9191. https://doi.org/10.1039/C7SM01918A

    Article  CAS  PubMed  Google Scholar 

  35. Güzel E, Güney S, Kandaz M (2015) One pot reaction and three type products; 1(4),8(11)-15(18),22(25) adjacent azine attached as macrocyclically mono, bunk-type (dimer) and polymeric metallo phthalocyanines; synthesis, spectroscopy, and electrochemistry. Dyes Pigments 113:416–425. https://doi.org/10.1016/j.dyepig.2014.08.019

    Article  CAS  Google Scholar 

  36. Smith DS, Bell RA, Valliant J, Kramer JR (2004) Determination of strong ligand sites in sewage effluent-impacted waters by competitive ligand titration with silver. Environmental science & technology 38(7):2120–2125. https://doi.org/10.1021/es035045p

    Article  CAS  Google Scholar 

  37. Annaraj B, Neelakantan MA (2014) Water-soluble pyridine-based colorimetric chemosensor for naked eye detection of silver ions: design, synthesis, spectral and theoretical investigation. Anal Meth 6(24):9610–9615. https://doi.org/10.1039/C4AY01592D

    Article  CAS  Google Scholar 

  38. Zhou Y, Zhou H, Ma T, Zhang J, Niu J (2012) A new Schiff base based on vanillin and naphthalimide as a fluorescent probe for Ag+ in aqueous solution. Spectrochim Acta A 88:56–59. https://doi.org/10.1016/j.saa.2011.11.054

    Article  CAS  Google Scholar 

  39. Hou J-T, Zhang Q-F, Xu B-Y, Lu Q-S, Liu Q, Zhang J, Yu X-Q (2011) A novel BINOL-based cyclophane via click chemistry: synthesis and its applications for sensing silver ions. Tetrahedron Lett 52(38):4927–4930. https://doi.org/10.1016/j.tetlet.2011.07.050

    Article  CAS  Google Scholar 

  40. Hwang KS, Park KY, Kim DB, Chang S-K (2017) Fluorescence sensing of Ag+ ions by desulfurization of an acetylthiourea derivative of 2-(2-hydroxyphenyl)benzothiazole. Dyes Pigments 147:413–419. https://doi.org/10.1016/j.dyepig.2017.08.041

    Article  CAS  Google Scholar 

  41. Fu Y, Mu L, Zeng X, Zhao J-L, Redshaw C, Ni X-L, Yamato T (2013) An NBD-armed thiacalix[4]arene-derived colorimetric and fluorometric chemosensor for Ag+: a metal–ligand receptor of anions. Dalton Trans 42(10):3552–3560. https://doi.org/10.1039/C2DT32115G

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Research Fund of the Istanbul Technical University (BAP, Project Number: 38142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orhan Güney.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, T., Umutlu, M. & Güney, O. Elucidation of Selectivity for Silver Ion Based on Metal-Induced H-Type Aggregation of Fluorescent Receptor. J Fluoresc 30, 365–373 (2020). https://doi.org/10.1007/s10895-020-02520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02520-3

Keywords

Navigation