Skip to main content
Log in

Water Soluble Porphyrin for the Fluorescent Determination of Cadmium Ions

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Porphyrins are highly conjugated molecules that perform wide variety of functions in biological systems. They absorb strongly in the visible region and they are excellent fluorophores that emit in the visible region. If the meso or β positions of porphyrins are properly substituted, emission in the NIR region is facilitated. The fluorescence property of porphyrins can be used in sensing applications. Here, we report the synthesis of a water soluble porphyrin that emits in the NIR region and this molecule is used in the fluorescent determination of cadmium ion, which is an environmental pollutant and affects the health of living organisms adversely. 5,10,15,20-tetrakis(4-hydroxy-3,5-dimethoxyphenyl)porphyrin (THMPP), which is water soluble was synthesised from 5,10,15,20-tetrakis(3,4,5-trimethoxyphenyl)porphyrin (TMPP) by partial demethylation, which in turn was synthesized by mixture acid method. The donor-acceptor interaction of THMPP-Cd2+ system displays a dynamic fluorescence quenching through the electron transfer (ET) mechanism. Developed method showed a linear response toward Cd2+ in the concentration range of 0.25 μM to 2 μM. The limit of detection was found to be 0.1499 μM. THMPP exhibited excellent selectivity towards Cd (II) in presence of other metal ions like Hg2+, Mn2+, Mg2+, Co2+ in 1:100, Zn2+, Cu2+, Ni2+ in 1:10 and Na+, K+ in 1:1 M ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lu ZN, Wang L, Zhang X, Zhu ZJ (2019) A selective fluorescent chemosensor for Cd2+ based on 8-hydroxylquinoline benzothiazole conjugate and imaging application. Spectrochim Acta Part A Mol Biomol Spectrosc 213:57–63. https://doi.org/10.1016/j.saa.2019.01.041

    Article  CAS  Google Scholar 

  2. Rasheed T, Bilal M, Nabeel F, Iqbal HMN, Li C, Zhou Y (2018) Fluorescent sensor based models for the detection of environmentally related toxic heavy metals. Sci Total Environ 615:476–485. https://doi.org/10.1016/j.scitotenv.2017.09.126

    Article  CAS  PubMed  Google Scholar 

  3. Peng Y, Wang M, Wu X et al (2018) Methionine capped gold nanoclusters as a fluorescence enhanced probe for cadmium (II) sensing. Sensors 18:658. https://doi.org/10.3390/s18020658

    Article  CAS  Google Scholar 

  4. Quang DT, Kim JS (2010) Fluoro and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem Rev 110:6280–6301. https://doi.org/10.1021/cr100154p

    Article  CAS  Google Scholar 

  5. Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117. https://doi.org/10.1016/S0300-483X(03)00305-6

    Article  CAS  PubMed  Google Scholar 

  6. Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208. https://doi.org/10.1016/j.taap.2009.04.020

    Article  CAS  PubMed  Google Scholar 

  7. Marettová E, Maretta M, Legáth J (2015) Toxic effects of cadmium on testis of birds and mammals: a review. Anim Reprod Sci 155:1–10. https://doi.org/10.1016/j.anireprosci.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  8. Leao DJ, Junior MMS, Brandao GC, Ferreira SLC (2016) Simultaneous determination of cadmium, iron and tin in canned foods using high resolution continuum source graphite furnace atomic absorption spectrometry. Talanta 153:45–50. https://doi.org/10.1016/j.talanta.2016.02.023

    Article  CAS  PubMed  Google Scholar 

  9. Navarro Reig M, Jaumot J, Piña B et al (2017) Metabolomic analysis of the effects of cadmium and copper treatment in Oryza sativa L. using untargeted liquid chromatography coupled to high resolution mass spectrometry and all ion fragmentation. Metallomics 9:660–675. https://doi.org/10.1039/C6MT00279J

    Article  CAS  PubMed  Google Scholar 

  10. Sun J, Yang Z, Lee H, Wang L (2015) Simultaneous speciation and determination of arsenic, chromium and cadmium in water samples by high performance liquid chromatography with inductively coupled plasma mass spectrometry. Anal Methods 7:2653–2658. https://doi.org/10.1039/C4AY02813A

    Article  CAS  Google Scholar 

  11. Azimi S, Es’haghi Z (2017) A magnetized nanoparticle based solid phase extraction procedure followed by inductively coupled plasma atomic emission spectrometry to determine arsenic, lead and cadmium in water, milk, Indian rice and red tea. Bull Environ Contam Toxicol 98:830–836. https://doi.org/10.1007/s00128-017-2068-8

    Article  CAS  PubMed  Google Scholar 

  12. Taki M, Desaki M, Ojida A, Iyoshi S, Hirayama T, Hamachi I, Yamamoto Y (2008) Fluorescence imaging of intracellular cadmium using a dual-excitation ratiometric chemosensor. J Am Chem Soc 130:12564–12565. https://doi.org/10.1021/ja803429z

    Article  CAS  PubMed  Google Scholar 

  13. Niu WJ, Shan D, Zhu RH et al (2016) Dumbbell shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and L ascorbic acid. Carbon 96:1034–1042. https://doi.org/10.1016/j.carbon.2015.10.051

    Article  CAS  Google Scholar 

  14. Makwana BA, Vyas DJ, Bhatt KD, Darji S, Jain VK (2016) Novel fluorescent silver nanoparticles: sensitive and selective turn off sensor for cadmium ions. Appl Nanosci 6:555–566. https://doi.org/10.1007/s13204-015-0459-x

    Article  CAS  Google Scholar 

  15. Pan Y, Wang J, Guo X, Liu X, Tang X, Zhang H (2018) A new three dimensional zinc based metal organic framework as a fluorescent sensor for detection of cadmium ion and nitrobenzene. J Colloid Interface Sci 513:418–426. https://doi.org/10.1016/j.jcis.2017.11.034

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Wang P, Fu J et al (2017) Turn-on fluorescent sensor for zinc and cadmium ions based on quinolone and its sequential response to phosphate. J Lumin 186:16–22. https://doi.org/10.1016/j.jlumin.2017.01.037

    Article  CAS  Google Scholar 

  17. Cheng F, Wu X, Liu M et al (2016) A porphyrin-based near infrared fluorescent sensor for sulfur ion detection and its application in living cells. Sensors Actuators B Chem 228:673–678. https://doi.org/10.1016/j.snb.2016.01.100

    Article  CAS  Google Scholar 

  18. Escobedo JO, Rusin O, Lim S, Strongin RM (2010) NIR dyes for bioimaging applications. Current Opin Chem Biol 14:64–70. https://doi.org/10.1016/j.cbpa.2009.10.022

    Article  CAS  Google Scholar 

  19. Yuan L, Lin W, Zheng K, He L, Huang W (2013) Far red to near infrared analyte responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev 42:622–661. https://doi.org/10.1039/C2CS35313J

    Article  CAS  PubMed  Google Scholar 

  20. Pauli J, Brehm R, Spieles M, Kaiser WA, Hilger I, Resch-Genger U (2010) Novel fluorophores as building blocks for optical probes for in vivo near infrared fluorescence (NIRF) imaging. J Fluoresc 20:681–693. https://doi.org/10.1007/s10895-010-0603-7

    Article  CAS  PubMed  Google Scholar 

  21. Guo Z, Park S, Yoon J, Shin I (2014) Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev 43:16–29. https://doi.org/10.1039/C3CS60271K

    Article  PubMed  Google Scholar 

  22. Lv Y, Wu L, Shen W et al (2015) A porphyrin based chemosensor for colorimetric and fluorometric detection of cadmium (II) with high selectivity. J Porphyr Phthalocyanines 19:769–774. https://doi.org/10.1142/S1088424615500510

    Article  CAS  Google Scholar 

  23. Luo HY, Jiang JH, Zhang XB, Li CY, Shen GL, Yu RQ (2007) Synthesis of porphyrin appended terpyridine as a chemosensor for cadmium based on fluorescent enhancement. Talanta 72:575–581. https://doi.org/10.1016/j.talanta.2006.11.028

    Article  CAS  PubMed  Google Scholar 

  24. Behbahani A, Eghbali H, Ardjmand M et al (2016) A novel bio compatible sorbent based on carbon nanostructure modified by porphyrin for heavy metal separation from industrial wastewaters. J Environ Chem Eng 4:398–404. https://doi.org/10.1016/j.jece.2015.11.034

    Article  CAS  Google Scholar 

  25. Huang WB, Gu W, Huang HX et al (2017) A porphyrin based fluorescent probe for optical detection of toxic Cd2+ ion in aqueous solution and living cells. Dyes Pigments 143:427–435. https://doi.org/10.1016/j.dyepig.2017.05.001

    Article  CAS  Google Scholar 

  26. Avudaiappan G, Jacob KA, Theresa LV et al (2019) A novel dendritic polymer based turn-off fluorescence sensor for the selective detection of cyanide ion in aqueous medium. React Funct Polym 137:71–78. https://doi.org/10.1016/j.reactfunctpolym.2019.01.018

    Article  CAS  Google Scholar 

  27. Milgrom LR (1983) Synthesis of some new tetraarylporphyrins for studies in solar energy conversion. J Chem Soc Perkin Trans 1:2535–2539. https://doi.org/10.1039/P19830002535

    Article  Google Scholar 

  28. Banerjee C, Kuchlyan J, Banik D, Kundu N, Roy A, Ghosh S, Sarkar N (2014) Interaction of gold nanoclusters with IR light emitting cyanine dyes: a systematic fluorescence quenching study. Phys Chem Chem Phys 16:17272–17283. https://doi.org/10.1039/C4CP02563F

    Article  CAS  PubMed  Google Scholar 

  29. Mathew MS, Baksi A, Pradeep T, Joseph K (2016) Choline induced selective fluorescence quenching of acetylcholinesterase conjugated au@ BSA clusters. Biosens Bioelectron 81:68–74. https://doi.org/10.1016/j.bios.2016.02.048

    Article  CAS  PubMed  Google Scholar 

  30. Anand T, Sivaraman G, Anandh P et al (2014) Colorimetric and turn on fluorescence detection of Ag (I) ion. Tetrahedron Lett 55:671–675. https://doi.org/10.1016/j.tetlet.2013.11.104

    Article  CAS  Google Scholar 

  31. Sivasankaran U, Cyriac ST, Menon S, Kumar KG (2017) Fluorescence turn off sensor for brilliant blue FCF- an approach based on inner filter effect. J Fluoresc 27:69–77. https://doi.org/10.1007/s10895-016-1935-8

    Article  CAS  PubMed  Google Scholar 

  32. Myles AJ, Branda NR (2001) Controlling photoinduced electron transfer within a hydrogen bonded porphyrin− phenoxynaphthacenequinone photochromic system. J Am Chem Soc 123:177–178. https://doi.org/10.1021/ja002733p

    Article  CAS  PubMed  Google Scholar 

  33. Ohgushi T, Li ZC, Li FM et al (1999) Photoexcitation and electron transfer reactions of zinc lipidporphyrins in DMSO. J Porphyr Phthalocyanines 3:53–59. https://doi.org/10.1002/(SICI)1099-1409(199901)3:1%3C53::AID-JPP103%3E3.0.CO;2-B

    Article  CAS  Google Scholar 

  34. Jasuja R, Jameson DM, Nishijo CK, Larsen RW (1997) Singlet excited state dynamics of tetrakis (4-N-methylpyridyl) porphine associated with DNA nucleotides. J Phys Chem B 101:1444–1450. https://doi.org/10.1021/jp962684w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to University Grants Commission and Cochin University of Science and Technology for funding. The authors also express their gratitude to Indian Institute of Science Education and Research, Trivandrum, Sophisticated Tests and Instrumentation Centre and International School of Photonics, Cochin University of Science and Technology for analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Rajith.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namitha, P.P., Saji, A., Francis, S. et al. Water Soluble Porphyrin for the Fluorescent Determination of Cadmium Ions. J Fluoresc 30, 527–535 (2020). https://doi.org/10.1007/s10895-020-02514-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02514-1

Keywords

Navigation