Skip to main content
Log in

Synthesis and Luminescence Properties of Ho3+ and Er3+-Doped CaWO4 Nanocrystalline Powders Prepared by Self-Propagating Combustion Method

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Nanocrystalline Er3+-doped CaWO4 (CaWO4:Er3+) and Ho3+-doped CaWO4 (CaWO4:Ho3+) powders were fabricated by a facile sol-gel self-propagating combustion method using glycin as reductant. The components, microstructure and luminescence properties of samples were studied in detail. The as-prepared CaWO4:Er3+ and CaWO4:Ho3+ samples presented meshy and porous structure, which can be attributed to the instantaneous releasing of a lot of gases during the combustion reaction. The emission spectra of CaWO4:Ho3+ presented two emission peaks around 415 and 542 nm, corresponding to the intrinsic emission of [WO4]2− complex and the characteristic emission of Ho3+ from excited state 5F4 to ground state 5I8 transition. For the CaWO4:Er3+ sample, three emission peaks centered at 420, 525 and 550 nm can be observed. The mechanism of emission process and energy transfer process in CaWO4:Er3+ and CaWO4:Ho3+ was explained in detail. This work shows that the multiple luminescence emission can be realized by doping a small amount of Er3+ or Ho3+ into CaWO4 host materials, which is significant for developing luminescent materials of tungstate systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kolobanov VN, Kamenskikh IA, Mikhailin VV, Shpinkov IN, Spassky DA, Zadneprovsky BI, Potkin LI, Zimmerer G (2002) Optical and luminescent properties of anisotropic tungstate crystals. Nucl Instrum Meth A 486:496–503

    Article  CAS  Google Scholar 

  2. Wang XZ (2014) Hydrothermal synthesis and luminescence of MWO4:Tb3+ (M= Ca, Sr, Ba) microsphere phosphors. J Mater Sci Mater Electron 25:3271–3275

    Article  CAS  Google Scholar 

  3. Tian Y, Liu Y, Hua RN, Na LY, Chen BJ (2012) Synthesis and luminescent properties of spindle-like CaWO4:Sm3+ phosphors. Mater Res Bull 47:59–62

    Article  CAS  Google Scholar 

  4. Tian Y, Chen BJ, Yu HQ, Hua RN, Li XP, Sun JS, Cheng LH, Zhong HY, Zhang JS, Zheng YF, Yu TT, Huang LB (2011) Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres. J Colloid Interface Sci 360:586–592

    Article  CAS  Google Scholar 

  5. Page AG, Godbole SV, Sastry MD (1989) Electronic spectra and co-operative optical transitions in CaWO4:Tb3+ single crystal. J Phys Chem Solids 50:571–575

    Article  CAS  Google Scholar 

  6. Tong W, Li L, Hu W, Yan T, Li G (2010) Systematic control of monoclinic CdWO4 nanophase for optimum photocatalytic activity. J Phys Chem C 114:1512–1519

    Article  CAS  Google Scholar 

  7. Jia G, Dong DB, Song CY, Li LF, Huang CM, Zhang CM (2014) Hydrothermal synthesis and luminescence properties of monodisperse BaWO4:Eu3+ submicrospheres. Mater Lett 120:251–254

    Article  CAS  Google Scholar 

  8. Chen YQ, Park SW, Moon BK, Choi BC, Jeong JH, Guo CF (2013) Effect of sodium citrate on the shape and photoluminescence properties of CaWO4:Eu3+ superstructures synthesized by the hydrothermal method. CrystEngComm 15:8255–8261

    Article  CAS  Google Scholar 

  9. Piskula Z, Czajka J, Staninski K, Lis S (2014) Luminescence properties of calcium tungstate activated by lanthanide(III) ions. J Rare Earths 32:221–225

    Article  CAS  Google Scholar 

  10. Dabre KV, Dhobl SJ, Lochab J (2014) Synthesis and luminescence properties of Ce3+ doped MWO4 (M=ca, Sr and Ba) microcrystalline phosphors. J Lumin 149:348–352

    Article  CAS  Google Scholar 

  11. Nazarov MV, Tsukerblat BS, Popovici EJ, Jeon DY (2005) Polarization selection rules for the allowed optical transitions in europiumeterbium double activated calcium tungstate phosphor. Solid State Commun 133:203–208

    Article  CAS  Google Scholar 

  12. Lim CS (2012) Microwave-assisted synthesis of CdWO4 by solid-state metathetic reaction. Mater Chem Phys 131:714–718

    Article  CAS  Google Scholar 

  13. Phani AR, Passacantando M, Lozzi L, Santucci S (2000) Structural characterization of bulk ZnWO4 prepared by solid state method. J Mater Sci 35:4879–4883

    Article  CAS  Google Scholar 

  14. Wen F, Zhao X, Huo H, Chen JS, Lin E, Zhang J (2002) Hydrothermal synthesis and photoluminescent properties of ZnWO4 and Eu3+-doped ZnWO4. Mater Lett 55:152–157

    Article  CAS  Google Scholar 

  15. Zhang Q, Chen X, Zhou Y, Zhang G, Yu S (2007) Synthesis of ZnWO4@MWO4 (M=Mn, Fe) core-shell nanorods with optical and antiferromagnetic property by oriented attachment mechanism. J Phys Chem C111:3927–3933

    Google Scholar 

  16. Song XC, Yang E, Ma R, Chen FH, Ye ZL, Luo M (2009) Hydrothermal preparation and photoluminescence of bundle-like structure of ZnWO4 nanorods. Appl Phys A Mater Sci Process 94:185–188

    Article  CAS  Google Scholar 

  17. Mano PA, Kalai SR, Senthilkumar B, Satheeshkumara MK, Sanjeeviraja C (2011) Synthesis and characterization of CdWO4 nanocrystals. Ceram Int 37:2485–2488

    Article  Google Scholar 

  18. Yang YG, Wang XP, Liu B (2014) Synthesis of CaWO4 and CaWO4:Eu microspheres by precipitation. Nano 9:1450008

    Article  Google Scholar 

  19. Nadaraia L, Jalabadze N, Chedia R, Antadze M, Khundadze L (2010) Preparation of tungstate nanopowders by sol–gel method. IEEE Trans Nucl Sci 57:1370–1376

    Article  CAS  Google Scholar 

  20. Chen GQ, Wang FL, Ji WC, Liu YX, Zhang X (2016) Improved luminescence of CaWO4:Eu3+ microspheres by codoping Gd3+. Superlattice Microst 90:30–37

    Article  CAS  Google Scholar 

  21. Cavalli E, Boutinaud P, Grinberg M (2016) Luminescence dynamics in CaWO4:Pr3+ powders and single crystals. J Lumin 169:450–453

    Article  CAS  Google Scholar 

  22. Xiao SH, Jiang WF, Li LY, Li XJ (2007) Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder. Mater Chem Phys 106:82–87

    Article  CAS  Google Scholar 

  23. Ju YW, Park JH, Jung HR, Cho SJ, Lee WJ (2008) Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning. Mater Sci Eng B 147:7–12

    Article  CAS  Google Scholar 

  24. Vajargah SH, Madaah HRH, Nemati ZA (2007) Preparation and characterization of yttrium iron garnet (YIG) nanocrystalline powders by auto-combustion of nitrate–citrate gel. J Alloys Compd 430:339–343

    Article  Google Scholar 

  25. Guo XZ, Ravi BG, Devi PS, Hanson JC, Margolies J, Gambino RJ, Parise JB, Sampath S (2005) Synthesis of yttrium iron garnet (YIG) by citrate nitrate gel combustion and precursor plasma spray processes. J Magn Magn Mater 295:145–154

    Article  CAS  Google Scholar 

  26. Qi XW, Zhou J, Yue ZX, Gui ZL, Li LT (2002) Auto-combustion synthesis of nanocrystalline LaFeO3. Mater Chem Phys 78:25–29

    Article  CAS  Google Scholar 

  27. Zhou Y, Yan B (2013) RE2(MO4)3:Ln3+ (RE = Y, La, Gd, Lu; M = W, Mo; Ln = Eu, Sm, Dy) microcrystals: controlled synthesis, microstructure and tunable luminescence. Cryst Eng Comm 15:5694–5702

    Article  CAS  Google Scholar 

  28. Chen S, Wu MJ, An LQ, Li YX, Wang SW (2007) Strong green and red Upconversion emission in Er3+-Doped Na1/2Bi1/2TiO3 ceramics. J Am Ceram Soc 90:664–666

    Article  CAS  Google Scholar 

  29. Luo LH, Du P, Li WP, Tao WD, Chen HB (2013) Effects of Er doping site and concentration on piezoelectric, ferroelectric, and optical properties of ferroelectric Na0.5Bi0.5TiO3. J Appl Phys 114:124104

    Article  Google Scholar 

  30. Xu W, Zhao H, Li YX, Zheng LJ, Zhang ZG, Cao WW (2013) Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4. Sensor Actuat B-Chem 188:1096–1100

    Article  CAS  Google Scholar 

  31. Zhou XJ, Wang RX, Xiang GT, Jiang S, Li L, Luo XB, Pang Y, Tian YL (2017) Multi-parametric thermal sensing based on NIR emission of Ho(III) doped CaWO4 phosphors. Opt Mater 66:12–16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (No.51701098). This work is also sponsored by the Opening Project of State Key laboratory of Crystal Material in Shandong University (KF1706), and K. C. Wong Magna Foundation in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linwen Jiang.

Ethics declarations

Conflict of Interest

No any authors have a financial or commercial conflict of interest in this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Jiang, L., Xu, X. et al. Synthesis and Luminescence Properties of Ho3+ and Er3+-Doped CaWO4 Nanocrystalline Powders Prepared by Self-Propagating Combustion Method. J Fluoresc 30, 389–396 (2020). https://doi.org/10.1007/s10895-020-02507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02507-0

Keywords

Navigation