Skip to main content
Log in

Fabrication of Fluorescence Turn-off-on Sensor Based on g-C3N4 Quantum Dots and MgFe Layered Double Hydroxide for the Detection of Citrate

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We fabricated a new and selective fluorescent sensor for the detection of citrate by employing g-C3N4 quantum dots (g-CNQDs) and MgFe layered double hydroxide (MgFe-LDH). The g-CNQDs interacted with MgFe-LDH via electrostatic interaction and the fluorescence of g-CNQDs was effectively quenched by MgFe-LDH due to inner filter effect. Upon addition of citrate, the fluorescence of the g-CNQDs was significantly enhanced, arising from the replacement of g-CNQDs by citrate because citrate competed with g-CNQDs to form more stable complexes with MgFe-LDH. Therefore, we developed a “turn-off–on” fluorescence assay method for the detection of citrate. This method enabled the selective detection of citrate with linear range of 0.5–3.0 μM and 3.0–10.0 μM with a 12.3 nM limit of detection. This method exhibited advantages including easy preparation, environmentally friendly process and rapid response toward citrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wise DR, Ward PS, Shay JES, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, DeMatteo RG, Simon MC, Thompson CB (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A 108:19611–19616

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hatzivassiliou G, Zhao FD, Andreadis C, Shaw AN, Dhanak D, Hingorani SR et al (2005) Atp citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8:311–321

    Article  CAS  PubMed  Google Scholar 

  3. Costello LC, Franklin RB (2006) The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer 5:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Muñoz JA, López-Mesas M, Valiente M (2010) Development and validation of a simple determination of urine metabolites (oxalate, citrate, uric acid and creatinine) by capillary zone electrophoresis. Talanta 81:392–397

    Article  CAS  PubMed  Google Scholar 

  5. Cebotaru V, Kaul S, Devuyst O, Cai H, Racusen L, Guggino WB, Guggino SE (2005) High citrate diet delays progression of renal insufficiency in the ClC-5 knockout mouse model of Dent's disease. Kidney Int 68:642–652

    Article  CAS  PubMed  Google Scholar 

  6. Schell-Feith EA, Maerdijk A, Zweiten PHTV, Zanderland HM, Holscher HC, Holthe JK, van der Heijden BJ (2006) Does citrate prevent nephrocalcinosis in preterm neonates? Pediatr.Nephrol. 21:1830–1836

    Article  PubMed  Google Scholar 

  7. DeBorba BM, Rohrer JS, Bhattacharyya L (2004) Development and validation of an assay for citric acid/citrate and phosphate in pharmaceutical dosage forms using ion chromatography with suppressed conductivity detection. J Pharm Biomed Anal 36:517–524

    Article  CAS  PubMed  Google Scholar 

  8. Chalgeri A, Tan HS (1996) Indirect photometric detection for determination of citrate in pharmaceutical matrices by ion chromatography. J Pharm Biomed Anal 14:835–844

    Article  CAS  PubMed  Google Scholar 

  9. Kelebek H, Selli S, Canbas A, Cabaroglu T (2009) HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan, Microchem J 91:187–192

    Article  CAS  Google Scholar 

  10. Miyakoshi K, Komoda M (1977) Determination of citric acid and its decomposed products in edible oils by gas liquid chromatography. J Am Oil Chem Soc 54:331–339

    Article  CAS  Google Scholar 

  11. Capitan-Vallvey LF, Arroyo-Guerrero E, Fernandez-Ramos MD, Santoyo-Gonzalez F (2005) Development of a one-shot optical citrate sensor based on a guanidinium synthetic receptor. Microchim Acta 151:93–100

    Article  CAS  Google Scholar 

  12. Trabesinger AH, Meier D, Dydak U, Lamerichs R, Boesiger P (2005) Optimizing press localized citrate detection at 3 tesla. Magn Reson Med 54:51–58

    Article  CAS  PubMed  Google Scholar 

  13. Zhuo S, Gong J, Ping Z, Zhu C (2015) High-throughput and rapid fluorescent visualization sensor of urinary citrate by cdte quantum dots. Talanta 141:21–25

    Article  CAS  PubMed  Google Scholar 

  14. Liu ZH, Devaraj S, Yang CR, Yen YP (2012) A new selective chromogenic and fluorogenic sensor for citrate ion. Sensors Actuators B Chem 174:555–562

    Article  CAS  Google Scholar 

  15. Zhu Z, Zhou J, Li Z, Yang C (2015) Dinuclear zinc complex for fluorescent indicator-displacement assay of citrate. Sensors Actuators B Chem 208:151–158

    Article  CAS  Google Scholar 

  16. Li CY, Zhou Y, Li YF, Kong XF, Zou CX, Weng C (2013) Colorimetric and fluorescent chemosensor for citrate based on a rhodamine and pb2+ complex in aqueous solution. Anal Chim Acta 774:79–84

    Article  CAS  PubMed  Google Scholar 

  17. Hang Y, Jian W, Tao J, Lu N, Hua J (2016) Diketopyrrolopyrrole-based ratiometric/turn-on fluorescent chemosensors for citrate detection in the near-infrared region by an aggregation-induced emission mechanism. Anal Chem 88:1696–1703

    Article  CAS  PubMed  Google Scholar 

  18. Liu C, Hang Y, Jiang T, Yang J, Zhang X, Hua J (2018) A light-up fluorescent probe for citrate detection based on bispyridinum amides with aggregation-induced emission feature. Talanta 178:847–853

    Article  CAS  PubMed  Google Scholar 

  19. Ding YD, Tong ZW, Nan YH, Wang YJ, Zou XY, Jiang ZY (2017) Graphitic carbon nitride-based nanocomposites as visible-light driven photocatalysts for environmental purification. Environ Sci 4:1455–1469

    CAS  Google Scholar 

  20. Oh J, Yoo RJ, Kim SY, Lee YJ, Kim DW, Park S (2015) Oxidized carbon nitrides: water-dispersible, atomically thin carbon nitride-based Nanodots and their performances as bioimaging probes. Chem-Eur J 21:6241–6246

    Article  CAS  PubMed  Google Scholar 

  21. Chen LC, Song JB (2017) Tailored graphitic carbon nitride nanostructures: synthesis, modification, and sensing applications. Adv Funct Mater 27:1702695

    Article  CAS  Google Scholar 

  22. Xiong M, Rong Q, Meng HM, Zhang XB (2016) Two-dimensional graphitic carbon nitride nanosheets for biosensing applications. Biosens Bioelectron 89:212–223

    Article  CAS  PubMed  Google Scholar 

  23. Huang H, Chen R, Ma J, Yan L, Zhao Y, Wang Y, Zhang W, Fan J, Chen X (2014) Graphitic carbon nitride solid nanofilms for selective and recyclable sensingof Cu2+ and ag+ in water and serum. Chem Commun 50:15415–15418

    Article  CAS  Google Scholar 

  24. Zhang S, Li J, Zeng M, Xu J, Wang X, Hu W (2014) Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions. Nanoscale 6:4157–4162

    Article  CAS  PubMed  Google Scholar 

  25. Xu YL, Niu XY, Zhang HJ, Xu LF, Zhao SG, Chen HL, Chen XG (2015) Switch-on fluorescence sensing of glutathione in food samples based on a (g-CNQD)-Hg2+ chemsensor. Agric Food Chem 63:1747–1755

    Article  CAS  Google Scholar 

  26. Tang Y, Song H, Su Y, Lv Y (2013) Turn-on persistent luminescence probe based ongraphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal Chem 85:11876–11884

    Article  CAS  PubMed  Google Scholar 

  27. Yan L, Zhou MJ, Zhang XJ, Huang LB, Chen W, Roy VAL, Zhang W, Chen X (2017) A novel type of aqueous dispersible ultrathin layered double hydroxide nanosheets for in vivo bioimaging and drug delivery. ACS Appl Mater Interfaces 9:34185–34193

    Article  CAS  PubMed  Google Scholar 

  28. Zhang P, Hu Y, Li L, Lu J (2017) Enhanced green fluorescence protein/layered double hydroxides composite ultrathin film: bio-hybrid assembly and its potential application as a fluorescent biosensor. J Mater Chem B 5:160–166

    Article  CAS  Google Scholar 

  29. He R, Li M, Fu Y, Jin L (2016) Silver nanoclusters functionalized by chromotropic acid and layered double hydroxides for turn-on detection of melamine. J Mater Chem C 4:6104–6109

    Article  CAS  Google Scholar 

  30. Song L, Shi W, Chao L (2016) Confinement effect in layered double hydroxide nanoreactor: improved optical sensing selectivity. Anal Chem 88:8188–8193

    Article  CAS  PubMed  Google Scholar 

  31. Liu JY, Lv GC, Gu WL, Li ZH, Tang AW, Mei LF (2017) A novel luminescence probe based on layered double hydroxides loaded with quantum dots for simultaneous detection of heavy metal ions in water. J Mater Chem C 5:5024–5030

    Article  CAS  Google Scholar 

  32. Li M, Fu Y, Jin L (2017) A dual-signal sensing system based on organic dyes-ldhs film for fluorescence detection of cysteine. Dalton Trans 46:7284–7290

    Article  CAS  PubMed  Google Scholar 

  33. Zhang XL, Zheng C, Guo SS, Li J, Yang H, Chen GN (2014) Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite. Anal Chem 86:3426–3434

    Article  CAS  PubMed  Google Scholar 

  34. Liu JJ, Tang DS, Chen ZT, Yan XM, Zhong Z, Kang LT, Yao JN (2017) Chemical redox modulated fluorescence of nitrogen-doped graphene quantum dots for probing the activity of alkaline phosphatase. Biosens Bioelectron 94:271–277

    Article  CAS  PubMed  Google Scholar 

  35. Ma JL, Yin BC, Wu X, Ye BC (2017) Simple and cost-effective glucose detection based on carbon Nanodots supported on silver nanoparticle. Anal Chem 89:1323–1328

    Article  CAS  PubMed  Google Scholar 

  36. Fan XQ, Feng Y, Su YY, Zhang LC, Lv Y (2015) A green solid-phase method for preparation of carbon nitride quantum dots and their applications in chemiluminescent dopamine sensing. RSC Adv 5:55158–55164

    Article  CAS  Google Scholar 

  37. Shan Z, Lu M, Curry DE, Beale S, Campbell S, Poduska KM et al (2017) Regenerative nanobots based on magnetic layered double hydroxide for azo dye removal and degradation. Chem Commun 53:10456–10458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (21707030) and Wuhan Youth Science and technology plan (2016070204010133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Q., Liu, X., He, Y. et al. Fabrication of Fluorescence Turn-off-on Sensor Based on g-C3N4 Quantum Dots and MgFe Layered Double Hydroxide for the Detection of Citrate. J Fluoresc 29, 719–726 (2019). https://doi.org/10.1007/s10895-019-02391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02391-3

Keywords

Navigation