Skip to main content
Log in

Study of the Binding between Camptothecin Analogs and FTO by Spectroscopy and Molecular Docking

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this work, the interaction between camptothecin (CPT) analogs and fat mass and obesity associated (FTO) was investigated using spectroscopy and molecular docking. From the experimental results, it was found that the CPT analogs caused the fluorescence quenching of FTO through a static quenching procedure. The binding constants and thermodynamic parameters at three different temperatures, the number of binding sites were obtained, which suggested that the hydrophobic interaction and electrostatic force played major role in the reaction between CPT analogs and FTO. Results revealed that 10-hydroxycamptothecin was the strongest quencher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wall ME, Wani MC, Cook CE, Palmer KH, Mcphail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of Camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890

    Article  CAS  Google Scholar 

  2. Jaxel C, Kohn KW, Wani MC (1989) Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase. I. Evidence for a specific receptor site and for a relation to antitumor activity. Cancer Res 49:1465–1469

    CAS  PubMed  Google Scholar 

  3. Rothenberg ML (1997) Topoisomerase I inhibitors: review and update. Ann Oncol 8:837–855

    Article  CAS  PubMed  Google Scholar 

  4. Sovio U, Mook-Kanamori DO, Warrington NM, Lawrence R, Briollais L, Palmer CN (2011) Association between common variation at the FTO locus and changes in body mass index from infancy to late childhood: the complex nature of genetic association through growth and development. PLoS Genet 7:e1001307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xi B, Shen Y, Zhang M, Liu X, Zhao X, Wu L (2010) The common rs9939609 variant of the fat mass and obesityassociated gene is associated with obesity risk in children and adolescents of Beijing, China. BMC Med Genet 11:107

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7(12):885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tiwari A, Krzysik-Walker SM, Ramachandran R (2012) Cloning and characterization of chicken fat mass and obesity associated (Fto) gene: fasting affects Fto expression. Domest Anim Endocrinol 42:1–10

    Article  CAS  PubMed  Google Scholar 

  8. Shen XC, Liang H, Guo JH, Song C (2003) Studies on the interaction between Ag+ and human serum albumin. J Inorg Biochem 95:124

    Article  CAS  PubMed  Google Scholar 

  9. Sułkowska A, Bojko B, Równicka J, Rezner P (2005) The competition of drugs to serum albumin in combination chemotherapy: NMR study. J Mol Struct 744:781

    Article  Google Scholar 

  10. Sanjoy Singh T (2011) Sivaprasad Mitra, interaction of cinnamic acid derivatives with serum albumins: a fluorescence spectroscopic study. Spectrochim Acta A 78:942

    Article  Google Scholar 

  11. Li N, Zhang Y, Wei Y (2004) J Hebei Normal Univ 28:50

  12. J.R. Lakowicz, Principles of fluorescence spectroscopy, Springer Press, Singapore 3 (2006) 278290.

  13. Alanazi AM, Bakheit AH, Darwisha HW (2017) Spectrochim Acta A Mol Biomol Spectrosc 171:174–182

    Article  PubMed  Google Scholar 

  14. Liu JM, Yue YY, Wang J, Yan XY, Liu R, Sun YY, Li XG (2015) Study of interaction between human serum albumin and three phenanthridine derivatives: fluorescence spectroscopy and computational approach. Spectrochim Acta A 145:473–481

    Article  CAS  Google Scholar 

  15. Samari F, Shamsipur M, Hemmateenejad B, Khayamian T, Gharaghani S (2012) Investigation of the interaction between amodiaquine and human serum albumin by fluorescence spectroscopy and molecular modeling. Eur J Med Chem 54:255–263

    Article  CAS  PubMed  Google Scholar 

  16. Liu BM, Zhang J, Bai CL, Wang X, Qiu XZ, Wang XL, Ji H, Liu B (2015) Spectroscopic study on flavonoid-drug interactions:competitive binding for human serum albumin between three flavonoid compounds and ticagrelor,a new antiplatelet drug. J Lumin 168:69–76

    Article  CAS  Google Scholar 

  17. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170

    Article  CAS  PubMed  Google Scholar 

  18. Ware WR (1962) Oxygen quenching of fluorescence in solution: an experimenta study of the diffusion process. J Phys Chem 66:455–458

    Article  CAS  Google Scholar 

  19. Alain M, Michel B, Michel D (1986) How to illustrate ligand-protein binding in a class experiment: an elementary fluorescent assay. J Chem Educ 63:365–366

    Article  Google Scholar 

  20. Hu Y, Xu S, Zhu X, Gong A (2009) Study of the interaction between fluoroquinolones and bovine serum albumin. Spectrochim Acta A 74:526–531

    Article  Google Scholar 

  21. Xu H, Liu Q, Zuo Y, Bi Y, Gao S (2009) Spectroscopic studies on the interaction of vitamin C with bovine serum albumin. J Solut Chem 38:15–25

    Article  CAS  Google Scholar 

  22. Kashanian S, Khodaei MM, Roshanfekr H, Shahabadi N, Mansouri G (2012) DNA binding, DNA cleavage and cytotoxicity studies of a new water soluble copper(II) complex: the effect of ligand shape on the mode of binding. Spectrochim Acta A 86:351–359

    Article  CAS  Google Scholar 

  23. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  CAS  PubMed  Google Scholar 

  24. Bi SY, Song DQ, Tian Y, Zhou X, Liu ZY, Zhang HQ (2005) Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim Acta Part A 61:629–636

    Article  Google Scholar 

  25. Chen GZ, Huang XZ, Xu JG, Zheng ZZ, Wang ZB (1990) The methods of flourescence analysis, 2nd edn. Beijing Science Press, Beijing, p 2–112

  26. Hu YJ, Yu HG, Dong JX, Yang X, Liu Y (2006) Spectroscopic studies on the interaction between 3,4,5-trimethoxybenzoic acid and bovine serum albumin. Spectrochim Acta Part A 65:988–992

    Article  Google Scholar 

  27. Liu XY, Ling ZX, Zhou X et al (2016) Comprehensive spectroscopic probing the interaction and conformation impairment of bovine serum albumin (BSA) by herbicide butachlor. J Photochem Photobiol B 162:332–339

    Article  CAS  PubMed  Google Scholar 

  28. Hu YJ, Liu Y, Pi ZB, Qu SS (2005) Interaction of cromolyn sodium with human serum albumin: a fluorescence quenching study. Bioorg Med Chem 13:6609–6614

    Article  CAS  PubMed  Google Scholar 

  29. Chi ZX, Liu RT (2011) Phenotypic characterization of the binding of tetracycline to human serum albumin by fluorescence spectroscopy and molecular modeling. Biomacromolecules 12:203–209

    Article  CAS  PubMed  Google Scholar 

  30. Shi JH, Chen J, Wang J et al (2015) Binding interaction of sorafenib with bovine serum albumin: Spectroscopic methodologies and molecular docking. Spectrochim Acta A Mol Biomol Spectrosc 149:630–637

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, Tian J, He W, Xie J, Hu Z, Chen X (2004) Spectrofluorimetric study of the binding of daphnetin to bovine serum albumin. J Pharm Biomed Anal 35:671–677

    Article  CAS  PubMed  Google Scholar 

  32. Wang R, Chai Y, Wang R, Zhang L, Wu J, Chang J (2012) Study of the interaction between bovine serum albumin and analogs of Biphenyldicarboxylate by spectrofluorimetry. Spectrochim Acta A 96:324–331

    Article  Google Scholar 

  33. Liu BM, Zhang J, Bai CL et al (2015) Spectroscopicstudyon flavonoid-drug interactions: competitive binding for human serumal bumin between three flavonoid compounds and ticagrelor, a new antiplatelet drug. J Lumin 168:69–76

    Article  CAS  Google Scholar 

  34. Yaseen Z, Banday AR, Hussain MA, Tabish M, Kabir-ud-Din (2014) Determination of the cationic amphiphilic drug-DNA binding mode and DNA-assisted fluorescence resonance energy transfer amplification. Spectrochim Acta A 122:553–564

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE (2009) Gaussian 09, revision A01 Gaussian Inc. Wallingford

    Google Scholar 

  36. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AK (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 16:2785–2791

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (No. 81330075), and 2015 Key science and technology plan project of Henan province (152102310065) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiyong Wang or Junbiao Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, T., Wang, Z., Zhang, L. et al. Study of the Binding between Camptothecin Analogs and FTO by Spectroscopy and Molecular Docking. J Fluoresc 27, 1467–1477 (2017). https://doi.org/10.1007/s10895-017-2086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2086-2

Keywords

Navigation