Skip to main content
Log in

A Coumarin-Based Luminescent Chemosensor for Recognition of Cu2+ and its In-Situ Complex for CN Sensing via Cu2+ Displacement Approach

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new coumarin based chemosensor has been developed for selective fluorescent recognition of Cu2+ in MeOH/H2O (4:1, v/v at pH = 7.2 aqueous solution) medium with 1:1 binding stoichiometry. The in-situ prepared Cu2+ complex displays high selectivity towards CN via Cu2+ displacement approach with detection limit in the micro molar range. Moreover, in presence of Cu2+, the receptor exhibits reversible emission change with EDTA and thus offers an interesting property of molecular ‘IMPLICATION’ logic gate with Cu2+ and EDTA as chemical inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jun ME, Roy B, Ahn KH (2011) “Turn-on” fluorescent sensing with “reactive” probes. Chem Commun 47:7583–7601

    Article  CAS  Google Scholar 

  3. Wenzel M, Hiscock JR, Gale PA (2012) Anion receptor chemistry: highlights from 2010. Chem Soc Rev 41:480–520

    Article  CAS  PubMed  Google Scholar 

  4. Schmidtchen FP, Stibor I (2005) Anion sensing. Springer, Berlin/Heidelberg, pp. 379–390

    Google Scholar 

  5. Du J, Hu M, Fan J, Peng X (2012) Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media. Chem Soc Rev 41:4511–4535

    Article  CAS  PubMed  Google Scholar 

  6. Bhorge YR, Chou TL, Chen YZ, Yen YP (2015) New coumarin-based dual chromogenic probe: Naked eye detection of copper and silver ions. Sensors Actuators B 220:1139–1144 and references therein

    Article  CAS  Google Scholar 

  7. Jung HJ, Singh N, Lee DY, Jang DO (2009) Benzimidazole-based ratiometric fluorescent receptor exhibiting molecular logic gate for Cu2+ and Fe3+. Tetrahedron Lett 50:5555–5558

    Article  CAS  Google Scholar 

  8. Wang S, Men G, Zhao L, Hou Q, Jiang S (2010) Binaphthyl-derived salicylidene Schiff base for dual-channel sensing of Cu, Zn cations and integrated molecular logic gates. Sensors Actuators B 145:826–831

    Article  CAS  Google Scholar 

  9. Cao X, Zeng X, Mu L, Chen Y, Wang R, Zhang Y, Zhang J, Wei G (2013) Characterization of the aggregation-induced enhanced emission, sensing and logic gate behavior of 2-(1-hydroxy-2-naphthyl) methylene hydrazone. Sensors Actuators B 177:493–499

    Article  CAS  Google Scholar 

  10. Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952S–959S

    CAS  PubMed  Google Scholar 

  11. Chen X, Jou MJ, Lee H, Kou S, Lim J, Nam S, Park S, Kim K, Yoon J (2009) New fluorescent and colorimetric chemosensors bearing rhodamine and binaphthyl groups for the detection of Cu2+. Sensors Actuators B 137:597–602

    Article  CAS  Google Scholar 

  12. Yin S, Leen V, Snick SV, Boens N, Dehaen W (2010) A highly sensitive, selective, colorimetric and near-infrared fluorescent turn-on chemosensor for Cu2+ based on BODIPY. Chem Commun 46:6329–6331

    Article  CAS  Google Scholar 

  13. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2044

    Article  CAS  PubMed  Google Scholar 

  14. Goswami S, Sen D, Das AK, Das NK, Aich K, Fun HK, Quah CK, Maity AK, Saha P (2013) A new rhodamine-coumarin Cu2+-selective colorimetric and ‘off–on’ fluorescence probe for effective use in chemistry and bioimaging along with its bound X-ray crystal structure. Sensors Actuators B 183:518–525

    Article  CAS  Google Scholar 

  15. Helal A, Rashid MHO, Choi CH, Kim HS (2011) Chromogenic and fluorogenic sensing of Cu2+ based on coumarin. Tetrahedron 67:2794–2802

    Article  CAS  Google Scholar 

  16. Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T, Kim JS (2009) Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms and applications in living cells. J Am Chem Soc 131:2008–2012

    Article  CAS  PubMed  Google Scholar 

  17. Su X, Aprahamian I (2014) Hydrazone-based switches, metallo-assemblies and sensors. Chem Soc Rev 43:1963–1981

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956

    Article  CAS  PubMed  Google Scholar 

  19. Bhattacharya R, Flora SJS (2009) Handbook of toxicology of chemical warfare agents. In: Gupta RC (ed). Academic Press, Boston, pp 255–270

  20. Lou X, Qin J, Li Z (2009) Colorimetric cyanide detection using an azobenzene acid in aqueous solutions. Analyst 134:2071–2075

    Article  CAS  PubMed  Google Scholar 

  21. Bhalla V, Singh H, Kumar M (2012) Triphenylene based copper ensemble for the detection of cyanide ions. Dalton Trans 41:11413–11418

    Article  CAS  PubMed  Google Scholar 

  22. You GR, Park GJ, Lee JJ, Kim C (2015) A colorimetric sensor for the sequential detection of Cu2+ and CN in fully aqueous media: practical performance of Cu2+. Dalton Trans 44:9120–9129

    Article  CAS  PubMed  Google Scholar 

  23. Jo HY, Lee SA, Na YJ, Park GJ, Kim C (2015) A colorimetric schiff base chemosensor for CN by naked-eye in aqueous solution. Inorg Chem Commun 54:73–76

    Article  CAS  Google Scholar 

  24. Kang J, Song EJ, Kim H, Kim YH, Kim Y, Kim S, Kim C (2013) Specific naked eye sensing of cyanide by chromogenic host: studies on the effect of solvents. Tetrahedron Lett 54:1015–1019

    Article  CAS  Google Scholar 

  25. Kumari N, Jha S, Bhattacharya S (2012) A chemodosimetric probe based on a conjugated oxidized bis-indolyl system for selective naked-eye sensing of cyanide ions in water. Chem Asian J 7:2805–2812

    Article  CAS  PubMed  Google Scholar 

  26. Kim HJ, Ko KC, Lee JH, Lee JY, Kim JS (2011) KCN sensor: unique chromogenic and ‘turn-on’ fluorescent chemodosimeter: rapid response and high selectivity. Chem Commun 47:2886–2888

    Article  CAS  Google Scholar 

  27. Xu Z, Chen X, Kim HN, Yoon J (2010) Sensors for the optical detection of cyanide ion. Chem Soc Rev 39:127–137

    Article  CAS  PubMed  Google Scholar 

  28. Park GJ, Hwang IH, Song EJ, Kim H, Kim C (2014) A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide. Tetrahedron 70:2822–2828

    Article  CAS  Google Scholar 

  29. Tang L, Cai M (2012) A highly selective and sensitive fluorescent sensor for Cu2+ and its complex for successive sensing of cyanide via Cu2+ displacement approach. Sensors Actuators B 173:862–867

    Article  CAS  Google Scholar 

  30. Shahid M, Razi SS, Srivastava P, Ali R, Maiti B, Misra A (2012) A useful scaffold based on acenaphthene exhibiting Cu2+ induced excimer fluorescence and sensing cyanide via Cu2+ displacement approach. Tetrahedron 68:9076–9084

    Article  CAS  Google Scholar 

  31. Upadhyaya KK, Mishra RK, Kumar V, Roy Chowdhury PK (2010) A coumarin based ICT probe for fluoride in aqueous medium with its real application. Talanta 82:312–318

    Article  Google Scholar 

  32. Mukherjee S, Paul AK, Stoeckli-Evans H (2014) A family of highly selective fluorescent sensors for fluoride based on excited state proton transfer mechanism. Sensors Actuators B 202:1190–1199

    Article  CAS  Google Scholar 

  33. Fletcher AN (1969) Quinine sulfate as a fluorescence quantum yield standard. Photochem Photobiol 9:439–444

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

University of Kalyani, India, DST-FIST (SR/FST/ESI-008/2008) and DST-PURSE, New Delhi, India are gratefully acknowledged for the financial support and infrastructural facilities during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soma Mukherjee.

Electronic supplementary material

ESM 1

(DOC 5187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Talukder, S. A Coumarin-Based Luminescent Chemosensor for Recognition of Cu2+ and its In-Situ Complex for CN Sensing via Cu2+ Displacement Approach. J Fluoresc 27, 1567–1572 (2017). https://doi.org/10.1007/s10895-016-1974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1974-1

Keywords

Navigation