Skip to main content
Log in

OFF/ON Red-Emitting Fluorescent Probes for Casein Recognition and Quantification Based on Indolium Derivatives

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Five derivatives of 2, 3, 3-trimethyl-3H-indolium containing different electron donor groups (H1 - H5) were synthesized for the determination of proteins. H3, a sensitive red-emitting fluorescent probe, was found for the discrimination of hydrophobic proteins from hydrophilic. The OFF - ON fluorescence switch of H3 was caused by the formation of twisted intramolecular charge-transfer (TICT) state when it combined with hydrophobic proteins in aqueous buffer. There was a good linear relationship between the emission intensity of H3 and the casein concentration (r = 0.9989). Based on this, a novel casein quantitative assay method was developed, and the method was applied to determinate casein in milk powder samples. Successfully, the results were in good agreement with Biuret method. In addition, a simple and sensitive method was established to differentiate and quantify three casein components (α-, β-, and κ-casein) due to their much different binding constants to H3 probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suzuki Y, Yokoyama K (2005) Design and synthesis of intramolecular charge transfer-based fluorescent reagents for the highly-sensitive detection of proteins. J Am Chem Soc 127:17799–17802

    Article  CAS  PubMed  Google Scholar 

  2. Angel LU, Rout B, Ilani T, Eisenstein M, Motiei L, Margulies D (2015) Protein recognition by bivalent, ‘turn-on’ fluorescent molecular probes. Chem Sci 6:5419–5425

    Article  Google Scholar 

  3. Escobedo JO, Rusin O, Wang W, Alpturk O, Kim KK, Xu X, Strongin RM (2006) Detection of biological thiols. In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence 2006, vol 3. Springer, US, pp. 139–162

    Chapter  Google Scholar 

  4. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  6. De Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  CAS  PubMed  Google Scholar 

  7. Ambrose WP, Goodwin PM, Jett JH, Orden AV, Werner JH, Keller RA (1999) Single molecule fluorescence spectroscopy at ambient temperature. Chem Rev 99:2929–2956

    Article  CAS  PubMed  Google Scholar 

  8. Patton WF (2000) Making blind robots see: the synergy between fluorescent dyes and imaging devices in automated proteomics. BioTechniques 28:944–957

    CAS  PubMed  Google Scholar 

  9. Loving G, Imperiali B (2008) A versatile amino acid analogue of the solvatochromic fluorophore 4-N,N-dimethylamino-1,8-naphthalimide: a powerful tool for the study of dynamic protein interactions. J Am Chem Soc 130:13630–13638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hou TC, Wu YY, Chianga PY, Tan KT (2015) Near-infrared fluorescence activation probes based on disassembly-induced emission cyanine dye. Chem Sci 6:4643–4649

    Article  CAS  Google Scholar 

  11. Savariar EN, Ghosh S, Gonzalez DC, Thayumanavan S (2008) Disassembly of noncovalent amphiphilic polymers with proteins and utility in pattern sensing. J Am Chem Soc 130:5416–5417

    Article  CAS  PubMed  Google Scholar 

  12. Tong H, Hong Y, Dong YQ, Häussler M, Z L, Lam JWY, Dong YP, Sung HHY, Williams ID, Tang BZ (2007) Protein detection and quantitation by tetraphenylethene-based fluorescent probes with aggregation-induced emission characteristics. J Phys Chem B 111:11817–11823

    Article  CAS  PubMed  Google Scholar 

  13. Tong H, Hong YN, Dong YQ, Häussler M, Lam JWY, Li Z, Guo ZF, Guo ZH, Tang BZ (2006) Fluorescent “light-up” bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chem Commun. doi:10.1039/B608425G

  14. Tong H, Wang LX, Jing XB, Wang FS (2003) “Turn-on” conjugated polymer fluorescent chemosensor for fluoride ion. Macromolecules 36:2584–2586

    Article  CAS  Google Scholar 

  15. Basak A, Bag SS, Basak A (2005) Design and synthesis of a novel enediynyl pentapeptide with predominantly β-turn structural motif and its potential as a fluorescence-based chemosensor. Bioorg Med Chem 13:4096–4102

    Article  CAS  PubMed  Google Scholar 

  16. Ma GY, Muller AM, Bardeen CJ, Cheng Q (2006) Self-assembly combined with photopolymerization for the fabrication of fluorescence “turn-on” vesicle sensors with reversible “on - off” switching properties. Adv Mater 18:55–60

    Article  CAS  Google Scholar 

  17. Fan LJ, Jones WE (2006) Studies of photoinduced electron transfer and energy migration in a conjugated polymer system for fluorescence “turn-on” chemosensor applications. J Phys Chem B 110:7777–7782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo ZQ, Nam SW, Park S, Yoon J (2012) A highly selective ratiometric near-infrared fluorescent cyanine sensor for cysteine with remarkable shift and its application in bioimaging. Chem Sci 3:2760–2765

    Article  CAS  Google Scholar 

  19. Guo ZQ, Zhu WH, Zhu MM, Wu XM, Tian H (2010) Near-infrared cell-permeable Hg2+ selective ratiometric fluorescent chemodosimeters and fast indicator paper for MeHg+ based on tricarbocyanines. Chem Eur J 16:14424–14432

    Article  CAS  PubMed  Google Scholar 

  20. Chen XQ, Nam SW, Kim GH, Song N, Jeong Y, Shin I, Kim SK, Kim J, Park S, Yoon J (2010) A near-infrared fluorescent sensor for detection of cyanide in aqueous solution and its application for bioimaging. Chem Commun 46:8953–8955

    Article  CAS  Google Scholar 

  21. Li YH, Wang YJ, Yang S, Zhao YR, Yuan L, Zheng J, Yang RH (2015) Hemicyanine-based high resolution ratiometric near-infrared fluorescent probe for monitoring pH changes in vivo. Anal Chem 87:2495–2503

    Article  CAS  PubMed  Google Scholar 

  22. Song FL, Wang L, Qiao XQ, Wang BS, Sun SG, Fan JL, Zhang LH, Peng XJ (2010) Asymmetric trimethine 3H-indocyanine dyes: efficient synthesis and protein labeling. Org Biomol Chem 8:4249–4251

    Article  CAS  PubMed  Google Scholar 

  23. Liu XD, Sun R, Xu Y, Xu YJ, Ge JF, Lu JM (2013) A benzoxazine-hemicyanine based probe for the colorimetric and ratiometric detection of biothiols. Sensors Actuators B 178:525–531

    Article  CAS  Google Scholar 

  24. Reja SI, Khan IA, Bhalla V, Kumar M (2016) A TICT based NIR-fluorescent probe for human serum albumin: a pre-clinical diagnosis in blood serum. Chem Commun 52:1182–1185

    Article  CAS  Google Scholar 

  25. Kabatc J, Jureka K, Kostrzewskaa K, Orzeł Ł (2015) Hemicyanine dyes derived from 2,3,3-trimethyl-3H-indolium as candidates for non-covalent protein probes. J Pharm Biomed Anal 114:433–440

    Article  CAS  PubMed  Google Scholar 

  26. Sun Y, Fan SW, Zhao D, Duan L, Li RF (2013) A fluorescent turn-on probe based on benzo [E] indolium for cyanide ion in water with high selectivity. J Fluoresc 23:1255–1261

    Article  CAS  PubMed  Google Scholar 

  27. Kimura Y, Momotake A, Takahashi N, Kasai H, Arai T (2012) Polarity-dependent photophysical properties of hemicyanine dyes and their application in 2-photon microscopy biological imaging. Chem Lett 41:528–530

    Article  CAS  Google Scholar 

  28. Kabatc J, Jurek K, Orzeł Ł (2015) New N-(carboxyethyl)-2-methylbenzothiazole-based hemicyanine dyes: synthesis, spectra, photostability and association with bovine serum albumin. J Mol Struct 1084:114–121

    Article  CAS  Google Scholar 

  29. Quintana SS, Moyano F, Falcone RD, Silber JJ, Correa NM (2009) Characterization of multifunctional reverse micelles’ interfaces using hemicyanines as molecular probes. II: effect of the surfactant. J Phys Chem B 113:6718–6724

    Article  CAS  PubMed  Google Scholar 

  30. Miao JT, Fan C, Sun R, Xu YJ, Ge JF (2014) Optical properties of hemicyanines with terminal amino groups and their applications in near-infrared fluorescent imaging of nucleoli. J Mater Chem B 2:7065–7072

    Article  CAS  Google Scholar 

  31. Liu YY, Wang Z, Zhang GX, Zhang W, Zhang DQ, Jiang XY (2012) Rapid casein quantification in milk powder with aggregation induced emission character of tetraphenylethene derivative. Analyst 137:4654–4657

    Article  CAS  PubMed  Google Scholar 

  32. Cao C, Liu XG, Qiao QL, Zhao M, Yin WT, Mao DQ, Zhang H, Xu ZC (2014) A twisted-intramolecular-charge-transfer (TICT) based ratiometric fluorescent thermometer with a mega-stokes shift and a positive temperature coefficient. Chem Commun 50:15811–15814

    Article  CAS  Google Scholar 

  33. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) Parallel wersion (OpenMPI) running with 48 nodes. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  35. Huang YY, Cheng TR, Li FY, Luo CP, Huang CH (2002) Photophysical studies on the mono- and dichromophoric hemicyanine dyes II. Solvent effects and dynamic fluorescence spectra study in chloroform and in LB films. J Phys Chem B 106:10031–10040

    Article  CAS  Google Scholar 

  36. Ren MG, Deng BB, Kong XQ, Zhou K, Liu KY, Xu GP, Lin WY (2016) A TICT based fluorescent probe for rapid and specific detection of hydrogen sulfide and its bio-imaging applications. Chem Commun 52:6415–6418

    Article  CAS  Google Scholar 

  37. Walstra P (1999) Casein sub-micelles: do they exist? Int Dairy J 9:189–192

    Article  CAS  Google Scholar 

  38. Phadungath C (2005) Casein micelle structure: a concise review. C J Sci Technol 27:201–212

    CAS  Google Scholar 

  39. Fox PF, McSweeny PLH (1998) Dairy chemistry and biochemistry. Blackie academic and professional. Springer, London, pp. 150–169

    Google Scholar 

  40. Swaisgood HE (2003) Chemistry of the caseins. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry-1 proteins, vol 1. Springer, US, pp. 139–201

    Chapter  Google Scholar 

  41. Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, Hollar CM, Ng-Kwai-Hang KF, Swais-Good HEJ (2004) Nomenclature of the proteins of cows’ milk-sixth revision. Dairy Sci 87:1741–1674

    Google Scholar 

  42. Kim YH, Cho DW, Yoon M, Kim D (1996) Observation of hydrogen-bonding effects on twisted intramolecular charge transfer of p-(N,N-diethylamino)benzoic acid in aqueous cyclodextrin solutions. J Phys Chem 100:15670–15676

    Article  CAS  Google Scholar 

  43. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  44. Kumosinski TF, Brown EM, Farell HM (1993) Three-dimensional molecular modeling of bovine caseins: an energy-minimized β-casein structure. Jr J Dairy Sci 76:931–945

    Article  CAS  Google Scholar 

  45. Swaisgood HE (1992) Chemistry of caseins. In: Fox PF (ed) Advanced dairy chemistry-1 proteins, vol 1. Elsevier Science, Oxford, pp. 63–110

    Google Scholar 

  46. Molina E, Frutos M, Ramos M (2000) Capillary electrophoresis characterization of the casein fraction of cheeses made from cows’, ewes’ and goats’ milks. J Dairy Res 67:209–216

    Article  CAS  PubMed  Google Scholar 

  47. Bramanti E, Sortino C, Onor M, Beni F, Raspi G (2003) Separation and determination of denatured α s1-, α s1-, β- and κ-caseins by hydrophobic interaction chromatography in cows’, ewes’ and goats’ milk, milk mixtures and cheeses. J Chromatogr A 994:59–74

    Article  CAS  PubMed  Google Scholar 

  48. Velosoc ACA, Teixeirab N, Ferreira IMPLVO (2002) Separation and quantification of the major casein fractions by reverse-phase high-performance liquid chromatography and urea–polyacrylamide gel electrophoresis detection of milk adulterations. J Chromatogr A 967:209–218

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from National Natural Science Foundation of China (21473101) and Three Gorges University (SDYC2016120, 2015CX130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changying Yang.

Electronic supplementary material

ESM 1

(DOCX 1019 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Liu, C., Gao, Q. et al. OFF/ON Red-Emitting Fluorescent Probes for Casein Recognition and Quantification Based on Indolium Derivatives. J Fluoresc 27, 391–398 (2017). https://doi.org/10.1007/s10895-016-1967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1967-0

Keywords

Navigation