Skip to main content

Advertisement

Log in

Facile Synthesis and Photophysical Characterization of New Quinoline Dyes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This paper describes the synthesis of new quinoline derivatives, molecules that has been long interest in the organic and medicinal chemistry. Through the Multicomponent Reaction (MCR), an important tool in modern synthetic methodology, that generate products with good structural complexity, in addition to economy of atoms and selectivity, we provide easy access to the preparation of quinoline derivatives. The reactions were promoted by niobium pentachloride, as a Lewis acid. Subsequently, the synthesis of new aminoquinoline derivatives with good yields was performed using Pd/C and hydrazine. The photophysical investigations of quinoline derivatives show the substituent effect on the optical properties characterization was done by absorption and photoluminescence measurements with quantum yields of up to 83 %, the presence of the amino group at position 6 at the quinoline backbone was crucial for obtaining these increased quantum yields. Results show that these molecules may have potential use for a variety of applications and mainly attracts attention because of its wide potential of applicability in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Michael JP (1997) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 14(6):605–618

    Article  CAS  Google Scholar 

  2. Campbell SF, Hardstone JD, Palmer MJ (1988) 2, 4-Diamino-6, 7-dimethoxyquinoline derivatives as. Alpha. 1-adrenoceptor antagonists and antihypertensive agents. J Med Chem 31(5):1031–1035

    Article  CAS  PubMed  Google Scholar 

  3. Pellerano, C., Savini, L., Massarelli, P., Bruni, G., & Fiaschi, A. I. (1990). New quinoline derivatives: synthesis and evaluation for antiinflammatory and analgesic properties--Note I. Farmaco (Società chimica italiana: 1989), 45(3), 269.

  4. Roma G, Di Braccio M, Grossi G, Mattioli F, Ghia M (2000) 1, 8-Naphthyridines IV. 9-substituted N, N-dialkyl-5-(alkylamino or cycloalkylamino)[1, 2, 4] triazolo [4, 3-a][1, 8] naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur J Med Chem 35(11):1021–1035

    Article  CAS  PubMed  Google Scholar 

  5. Kociubinska A, Gubernator J, Godlewska J, Stasiuk M, Kozubek A, Peczynska-Czoch W et al (2002) A derivative of 5-H-indolo [2, 3-b] quinoline-a novel liposomally-formulated anticancer agent. Cell Mol Biol Lett 7(2)

  6. Joseph B, Darro F, Béhard A, Lesur B, Collignon F, Decaestecker C et al (2002) 3-Aryl-2-quinolone derivatives: synthesis and characterization of in vitro and in vivo antitumor effects with emphasis on a new therapeutical target connected with cell migration. J Med Chem 45(12):2543–2555

    Article  CAS  PubMed  Google Scholar 

  7. Heiniger B, Gakhar G, Prasain K, Hua DH, Nguyen TA (2010) Second-generation substituted quinolines as anticancer drugs for breast cancer. Anticancer Res 30(10):3927–3932

    CAS  PubMed  Google Scholar 

  8. Stauffer F, Maira SM, Furet P, García-Echeverría C (2008) Imidazo [4, 5-c] quinolines as inhibitors of the PI3K/PKB-pathway. Bioorg Med Chem Lett 18(3):1027–1030

    Article  CAS  PubMed  Google Scholar 

  9. Maguire MP, Sheets KR, McVety K, Spada AP, Zilberstein A (1994) A new series of PDGF receptor tyrosine kinase inhibitors: 3-substituted quinoline derivatives. J Med Chem 37(14):2129–2137

    Article  CAS  PubMed  Google Scholar 

  10. Muruganantham N, Sivakumar R, Anbalagan N, Gunasekaran V, Leonard JT (2004) Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol Pharm Bull 27(10):1683–1687

    Article  CAS  PubMed  Google Scholar 

  11. Conklin JD, Hollifield RD (1970) Studies on the absorption, distribution, and elimination of amiquinsin hydrochloride, a hypotensive drug. Eur J Pharmacol 10(3):360–368

    Article  CAS  PubMed  Google Scholar 

  12. Jandhyala BS, Grega GJ, Buckley JP (1967) Hypotensive activity of several quinoline derivatives. Arch Int Pharmacodyn Ther 167(1):217

    CAS  PubMed  Google Scholar 

  13. Ferrarini PL, Mori C, Badawneh M, Calderone V, Greco R, Manera C et al (2000) Synthesis and β-blocking activity of (R, S)-(E)-oximeethers of 2, 3-dihydro-1, 8-naphthyridine and 2, 3-dihydrothiopyrano [2, 3-b] pyridine: potential antihypertensive agents–Part IX. Eur J Med Chem 35(9):815–826

    Article  CAS  PubMed  Google Scholar 

  14. Parekh N, Maheria K, Patel P, Rathod M (2011) Study on antibacterial activity for multidrug resistance stain by using phenyl pyrazolones substituted 3-amino 1H-pyrazolon (3, 4-b) quinoline derivative in vitro condition. Int. J. Pharm Tech Res 3:540–548

    CAS  Google Scholar 

  15. Eswaran S, Adhikari AV, Kumar RA (2010) New 1, 3-oxazolo [4, 5-c] quinoline derivatives: synthesis and evaluation of antibacterial and antituberculosis properties. Eur J Med Chem 45(3):957–966

    Article  CAS  PubMed  Google Scholar 

  16. Eswaran S, Adhikari AV, Chowdhury IH, Pal NK, Thomas KD (2010) New quinoline derivatives: synthesis and investigation of antibacterial and antituberculosis properties. Eur J Med Chem 45(8):3374–3383

    Article  CAS  PubMed  Google Scholar 

  17. Chen YL, Fang KC, Sheu JY, Hsu SL, Tzeng CC (2001) Synthesis and antibacterial evaluation of certain quinolone derivatives. J Med Chem 44(14):2374–2377

    Article  CAS  PubMed  Google Scholar 

  18. Musiol R, Jampilek J, Buchta V, Silva L, Niedbala H, Podeszwa B et al (2006) Antifungal properties of new series of quinoline derivatives. Bioorg Med Chem 14(10):3592–3598

    Article  CAS  PubMed  Google Scholar 

  19. Ryu CK, Lee JY, Jeong SH, Nho JH (2009) Synthesis and antifungal activity of 1H-pyrrolo [3, 2-g] quinoline-4, 9-diones and 4, 9-dioxo-4, 9-dihydro-1H-benzo [f] indoles. Bioorg Med Chem Lett 19(1):146–148

    Article  CAS  PubMed  Google Scholar 

  20. Dumouchel S, Mongin F, Trécourt F, Quéguiner G (2003) Tributylmagnesium ate complex-mediated bromine–magnesium exchange of bromoquinolines: a convenient access to functionalized quinolines. Tetrahedron Lett 44(10):2033–2035

    Article  CAS  Google Scholar 

  21. Arisawa M, Theeraladanon C, Nishida A, Nakagawa M (2001) Synthesis of substituted 1, 2-dihydroquinolines and quinolines using ene–ene metathesis and ene–enol ether metathesis. Tetrahedron Lett 42(45):8029–8033

    Article  CAS  Google Scholar 

  22. Cho CS, Kim JS, Oh BH, Kim TJ, Shim SC, Yoon NS (2000) Ruthenium-catalyzed synthesis of quinolines from anilines and allylammonium chlorides in an aqueous medium via amine exchange reaction. Tetrahedron 56(39):7747–7750

    Article  CAS  Google Scholar 

  23. Nedeltchev AK, Han H, Bhowmik PK (2010) Solution, thermal, and optical properties of poly (pyridinium salt) s derived from an ambipolar diamine consisting of diphenylquinoline and triphenyl amine moieties. J Polym Sci A Polym Chem 48(20):4611–4620

    Article  CAS  Google Scholar 

  24. Nedeltchev AK, Han H, Bhowmik PK (2010) Photoactive amorphous molecular materials based on quinoline amines and their synthesis by Friedländer condensation reaction. Tetrahedron 66(48):9319–9326

    Article  CAS  Google Scholar 

  25. Nedeltchev AK, Han H, Bhowmik PK (2010) Tetrahedron 66:9319

    Article  CAS  Google Scholar 

  26. Chen X, Qiu D, Ma L, Cheng Y, Geng Y, Xie Z, Wang L (2006) Synthesis, crystal structure, spectroscopy and electroluminescence of zinc (II) complexes containing bidentate 2-(2-pyridyl) quinoline derivative ligands. Transit Met Chem 31(5):639–644

    Article  CAS  Google Scholar 

  27. Kim JI, Shin IS, Kim H, Lee JK (2005) Efficient electrogenerated chemiluminescence from cyclometalated iridium (III) complexes. J Am Chem Soc 127(6):1614–1615

    Article  CAS  PubMed  Google Scholar 

  28. Thompson ME, Ma B, Djurovich P (2005)U.S. patent. 20050164031A1

  29. Raut SB, Dhoble SJ, Park K (2013) Amino diphenyl quinoline: a promising blue emitting organic luminescent material. Indian J Phys 87(1):19–23

    Article  CAS  Google Scholar 

  30. Dahule HK, Thejokalyani N, Dhoble SJ (2015) Novel Br-DPQ blue light-emitting phosphors for OLED. Luminescence 30(4):405–410

    Article  CAS  PubMed  Google Scholar 

  31. He Z, Milburn GHW, Baldwin KJ, Smith DA, Danel A, Tomasik P (2000) The efficient blue photoluminescence of pyrazolo-[3, 4-b]-quinoline derivatives and the energy transfer in polymer matrices. J Lumin 86(1):1–14

    Article  CAS  Google Scholar 

  32. Koścień E, Sanetra J, Gondek E, Jarosz B, Kityk IV, Ebothe J, Kityk AV (2004) Optical poling of several halogen derivatives of pyrazoloquinoline. Opt Commun 242(4):401–409

    Google Scholar 

  33. Gondek E, Koścień E, Sanetra J, Danel A, Wisła A, Kityk AV (2004) Optical absorption of 1H-pyrazolo [3, 4-b] quinoline and its derivatives. Spectrochim Acta A Mol Biomol Spectrosc 60(13):3101–3106

    Article  CAS  PubMed  Google Scholar 

  34. Koścień E, Sanetra J, Gondek E, Danel A, Wisła A, Kityk AV (2003) Optical absorption measurements and quantum-chemical simulations on 1H-pyrazolo [3, 4-b] quinoline derivatives. Opt Commun 227(1):115–123

    Google Scholar 

  35. Reddy BS, Venkateswarlu A, Reddy GN, Reddy YR (2013) Chitosan-SO 3 H: an efficient, biodegradable, and recyclable solid acid for the synthesis of quinoline derivatives via Friedländer annulation. Tetrahedron Lett 54(43):5767–5770

    Article  CAS  Google Scholar 

  36. Choi HJ, Choi HB, Paek SH, Song KH, Kang MS, Ko JJ (2010) Novel organic sensitizers with a quinoline unit for efficient dye-sensitized solar cells. Bull Kor Chem Soc 31(1):125–132

    Article  CAS  Google Scholar 

  37. Zhang X, Kale DM, Jenekhe SA (2002) Electroluminescence of multicomponent conjugated polymers. 2. Photophysics and enhancement of electroluminescence from blends of polyquinolines. Macromolecules 35(2):382–393

    Article  CAS  Google Scholar 

  38. Long R, Schofield K (1953) 630. Some alkylquinoline-5: 8-quinones. J Chem Soc (Resumed):3161–3167

  39. Roberts, E., & Turner, E. E. (1927). CCXXXIX.—The factors controlling the formation of some derivatives of quinoline, and a new aspect of the problem of substitution in the quinoline series. J Chem Soc (Resumed), 1832–1857.

  40. Gandeepan P, Rajamalli P, Cheng CH (2014) Synthesis of substituted quinolines by iron (III)-catalyzed three-component coupling reaction of aldehydes, amines, and Styrenes. Asian J Org Chem 3(3):303–308

    Article  CAS  Google Scholar 

  41. Heindel ND, Brodof TA, Kogelschatz JE (1966) Cyclization of amine-acetylene diester adducts: a modification of the conrad-limpach method. J Heterocycl Chem 3(2):222–223

    Article  CAS  Google Scholar 

  42. Hermecz I, Kereszturi G, Vasvaridebreczy L (1992) Aminomethylenemalonates and their use in heterocyclic synthesis-introduction. Adv Heterocycl Chem 54:1

    Article  Google Scholar 

  43. Friedlaender P (1882) Ueber o-Amidobenzaldehyd. Ber Dtsch Chem Ges 15(2):2572–2575

    Article  Google Scholar 

  44. Fehnel EA (1966) Friedländer syntheses with o-Aminoaryl ketones. I. Acid-catalyzed condensations of o-Aminobenzophenone with ketones1. J Org Chem 31(9):2899–2902

    Article  CAS  PubMed  Google Scholar 

  45. Marco-Contelles J, Perez-Mayoral E, Samadi A, Carreiras MDC, Soriano E (2009) Recent advances in the Friedlander reaction. Chem Rev 109(6):2652–2671

    Article  CAS  PubMed  Google Scholar 

  46. Dormer PG, Eng KK, Farr RN, Humphrey GR, McWilliams JC, Reider PJ et al (2003) Highly regioselective Friedländer annulations with unmodified ketones employing novel amine catalysts: syntheses of 2-substituted quinolines, 1, 8-naphthyridines, and related heterocycles. J Org Chem 68(2):467–477

    Article  CAS  PubMed  Google Scholar 

  47. McNaughton BR, Miller BL (2003) A mild and efficient one-step synthesis of quinolines. Org Lett 5(23):4257–4259

    Article  CAS  PubMed  Google Scholar 

  48. Bose DS, Kumar RK (2006) An efficient, high yielding protocol for the synthesis of functionalized quinolines via the tandem addition/annulation reaction of o-aminoaryl ketones with α-methylene ketones. Tetrahedron Lett 47(5):813–816

    Article  CAS  Google Scholar 

  49. Zolfigol MA, Salehi P, Ghaderi A, Shiri M (2007) A catalytic and green procedure for Friedlander quinoline synthesis in aqueous media. Catal Commun 8(8):1214–1218

    Article  CAS  Google Scholar 

  50. Ghorbani-Vaghei R, Akbari-Dadamahaleh S (2009) Poly (N-bromo-N-ethylbenzene-1, 3-disulfonamide) and N, N, N′, N′-tetrabromobenzene-1, 3-disulfonamide as efficient reagents for synthesis of quinolines. Tetrahedron Lett 50(9):1055–1058

    Article  CAS  Google Scholar 

  51. Vander Mierde H, Van Der Voort P, Verpoort F (2008) Base-mediated synthesis of quinolines: an unexpected cyclization reaction between 2-aminobenzylalcohol and ketones. Tetrahedron Lett 49(48):6893–6895

    Article  CAS  Google Scholar 

  52. Vander Mierde H, Van Der Voort P, Verpoort F (2009) Fast and convenient base-mediated synthesis of 3-substituted quinolines. Tetrahedron Lett 50(2):201–203

    Article  CAS  Google Scholar 

  53. Venkatesan H, Hocutt FM, Jones TK, Rabinowitz MH (2010) A one-step synthesis of 2, 4-unsubstituted quinoline-3-carboxylic acid esters from o-nitrobenzaldehydes. J Org Chem 75(10):3488–3491

    Article  CAS  PubMed  Google Scholar 

  54. Ryabukhin SV, Naumchik VS, Plaskon AS, Grygorenko OO, Tolmachev AA (2011) 3-haloquinolines by friedlander reaction of α-haloketones. J Org Chem 76(14):5774–5781

    Article  CAS  PubMed  Google Scholar 

  55. Rafiee E, Nejad FK, Joshaghani M (2011) Cs x H 3− x PW 12 O 40 heteropoly salts catalyzed quinoline synthesis via Friedländer reaction. Chin Chem Lett 22(3):288–291

    Article  CAS  Google Scholar 

  56. Denmark SE, Venkatraman S (2006) On the mechanism of the Skraup-Doebner-von miller quinoline synthesis. J Org Chem 71(4):1668–1676

    Article  CAS  PubMed  Google Scholar 

  57. Wu YC, Liu L, Li HJ, Wang D, Chen YJ (2006) Skraup-Doebner-von miller quinoline synthesis revisited: reversal of the regiochemistry for γ-aryl-β, γ-unsaturated α-ketoesters. J Org Chem 71(17):6592–6595

    Article  CAS  PubMed  Google Scholar 

  58. Vicente-García E, Catti F, Ramón R, Lavilla R (2010) Unsaturated lactams: new inputs for Povarov-type multicomponent reactions. Org Lett 12(4):860–863

    Article  PubMed  Google Scholar 

  59. Shindoh N, Tokuyama H, Takemoto Y, Takasu K (2008) Auto-tandem catalysis in the synthesis of substituted quinolines from Aldimines and electron-rich olefins: Cascade Povarov − Hydrogen-transfer reaction. J Org Chem 73(19):7451–7456

    Article  CAS  PubMed  Google Scholar 

  60. Zhao YL, Zhang W, Wang S, Liu Q (2007) Ethynyl ketene-S, S-acetals: the highly reactive electron-rich dienophiles and applications in the synthesis of 4-functionalized quinolines via a one-pot three-component reaction. J Org Chem 72(13):4985–4988

    Article  CAS  PubMed  Google Scholar 

  61. Richter H, García Mancheño O (2011) TEMPO oxoammonium salt-mediated dehydrogenative Povarov/oxidation tandem reaction of N-alkyl anilines. Org Lett 13(22):6066–6069

    Article  CAS  PubMed  Google Scholar 

  62. Gong DH, Li JF, Yuan CY (2001) A new and facile synthesis of 6-methyl-2-trifluoromethyl-4-(O, O-dialkyl) phosphoryl-quinoline. Chin J Chem 19(12):1263–1267

    Article  CAS  Google Scholar 

  63. Guchhait SK, Jadeja K, Madaan C (2009) A new process of multicomponent Povarov reaction–aerobic dehydrogenation: synthesis of polysubstituted quinolines. Tetrahedron Lett 50(49):6861–6865

    Article  CAS  Google Scholar 

  64. Povarov LS (1967) αβ-Unsaturated ethers and their analogues in reactions of diene synthesis. Russ Chem Rev 36(9):656–670

    Article  Google Scholar 

  65. Kouznetsov VV (2009) Recent synthetic developments in a powerful imino Diels–Alder reaction (Povarov reaction): application to the synthesis of N-polyheterocycles and related alkaloids. Tetrahedron 65(14):2721–2750

    Article  CAS  Google Scholar 

  66. Kouznetsov VV, Bohorquez ARR, Stashenko EE (2007) Three-component imino Diels–Alder reaction with essential oil and seeds of anise: generation of new tetrahydroquinolines. Tetrahedron Lett 48(50):8855–8860

    Article  CAS  Google Scholar 

  67. Tarantin AV, Glushkov VA, Mayorova OA, Shcherbinina IA, Tolstikov AG (2008) The Povarov reaction of ethyl (18-carbomethoxyabieta-8, 11, 13-triene-12-imino) glyoxylate with electron-donating dienophiles. Mendeleev Commun 18(4):188–190

    Article  CAS  Google Scholar 

  68. Rai NP, Shashikanth S, Arunachalam PN (2009) Iodine-catalyzed Aza-Diels–Alder reactions of aliphatic N-Arylaldimines. Synth Commun 39(12):2125–2136

    Article  CAS  Google Scholar 

  69. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76(9):1260

    Article  CAS  Google Scholar 

  70. Lacerda V Jr, dos Santos DA, da Silva-Filho LC, Greco SJ, dos Santos RB (2012) The growing impact of niobium in organic synthesis and catalysis. Aldrichimica Acta 45(1):19

    CAS  Google Scholar 

  71. Andrade A, Santos GC, Silva-Filho LC (2015) Synthesis of quinoline derivatives by multicomponent reaction using niobium pentachloride as Lewis acid. J Heterocycl Chem 52(1):273–277

    Article  Google Scholar 

  72. Zhang Y, Li P, Wang L (2011) Iron-catalyzed tandem reactions of aldehydes, terminal alkynes, and primary amines as a strategy for the synthesis of quinoline derivatives. J Heterocycl Chem 48(1):153–157

    Article  CAS  Google Scholar 

  73. Leardini R, Nanni D, Tundo A, Zanardi G, Ruggieri F (1992) Annulation reactions with iron (III) chloride: oxidation of imines. J Org Chem 57(6):1842–1848

    Article  CAS  Google Scholar 

  74. Sarma R, Prajapati D (2008) Ionic liquid-an efficient recyclable system for the synthesis of 2, 4-disubstituted quinolines via Meyer-Schuster rearrangement. Synlett 2008(19):3001–3005

    Article  Google Scholar 

  75. Anvar S, Mohammadpoor-Baltork I, Tangestaninejad S, Moghadam M, Mirkhani V, Khosropour AR, Kia R (2012) Efficient and environmentally-benign three-component synthesis of quinolines and bis-quinolines catalyzed by recyclable potassium dodecatungstocobaltate trihydrate under microwave irradiation. RSC Adv 2(23):8713–8720

    Article  CAS  Google Scholar 

  76. Lekhok KC, Prajapati D, Boruah RC (2008) Indium (III) trifluoromethanesulfonate: an efficient reusable catalyst for the alkynylation-cyclization of 2-aminoaryl ketones and synthesis of 2, 4-disubstituted quinolines. Synlett 2008(05):655–658

    Article  Google Scholar 

  77. Kulkarni A, Török B (2010) Microwave-assisted multicomponent domino cyclization–aromatization: an efficient approach for the synthesis of substituted quinolines. Green Chem 12(5):875–878

    Article  CAS  Google Scholar 

  78. Yao C, Qin B, Zhang H, Lu J, Wang D, Tu S (2012) One-pot solvent-free synthesis of quinolines by C–H activation/C–C bond formation catalyzed by recyclable iron (III) triflate. RSC Adv 2(9):3759–3764

    Article  CAS  Google Scholar 

  79. Das B, Jangili P, Kashanna J, Kumar RA (2011) Organic reactions in water: a distinct approach for the synthesis of quinoline derivatives starting directly from Nitroarenes. Synthesis 2011(20):3267–3270

    Article  Google Scholar 

  80. Zhang L, Wu B, Zhou Y, Xia J, Zhou S, Wang S (2013) Rare-earth metal chlorides catalyzed one-pot syntheses of quinolines under solvent-free microwave irradiation conditions. Chin J Chem 31(4):465–471

    Article  CAS  Google Scholar 

  81. Busch M, Schmidt W (1929) Über die katalytische Hydrierung organischer Halogenverbindungen. Berichte der deutschen chemischen Gesellschaft (A and B Series) 62(9):2612–2620

    Article  Google Scholar 

  82. Busch M, Weber W (1936) Über Kohlenstoffverkettungen bei der katalytischen Hydrierung von Alkylhalogeniden. J Prakt Chem 146(1–4):1–55

    Article  CAS  Google Scholar 

  83. Mosby W (1959) Notes-some 9, 10-Disubstituted Phenanthrenes. J Org Chem 24(3):421–423

    Article  CAS  Google Scholar 

  84. Rodrı́guez JG, Lafuente A (2002) A new advanced method for heterogeneous catalysed dechlorination of 1, 2, 3-, 1, 2, 4-, and 1, 3, 5-trichlorobenzenes in hydrocarbon solvent. Tetrahedron Lett 43(52):9645–9647

    Article  Google Scholar 

  85. Rodrıguez JG, Lafuente A (2002) A new advanced method for heterogeneous catalysed dechlorination of polychlorinated biphenyls (PCBs) in hydrocarbon solvent. Tetrahedron Lett 43(52):9581–9583

    Article  Google Scholar 

  86. Hu J, Zhang CY (2013) Simple and accurate quantification of quantum yield at the single-molecule/particle level. Anal Chem 85(4):2000–2004

    Article  CAS  PubMed  Google Scholar 

  87. Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy: a guide for students of organic chemistry, 3rd edn. Thomson Learning Inc., Bellingham (USA)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Procs. 2013/08,697–0, 2012/24,199–8, 2015/00,615–0 and 2016/01,599–1), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Proc. 302,753/2015–0) and Pró-Reitoria de Pesquisa (PROPe-UNESP) for their financial support. We would also like to thank CBMM – Companhia Brasileira de Mineralogia e Mineração for the NbCl5 samples. We express our special thanks to N. P. Lopes, J. N. Mendonça and J. C. Tomaz at the University of São Paulo in Ribeirão Preto for the HRMS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Carlos da Silva-Filho.

Electronic supplementary material

ESM 1

(DOC 87388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, G.C.d., de Andrade Bartolomeu, A., Ximenes, V.F. et al. Facile Synthesis and Photophysical Characterization of New Quinoline Dyes. J Fluoresc 27, 271–280 (2017). https://doi.org/10.1007/s10895-016-1954-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1954-5

Keywords

Navigation