Skip to main content

Advertisement

Log in

Calix[4]arene Based Dual Fluorescent Sensor for Al3+ and S2O7 2−

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Specific functionalized calix[4]arene based fluorescent chemosensor was synthesized for cations and anions binding efficiency examination. Receptor C4MA displayed strong affinity for Al3+and S2O7 2− with enhanced fluorescence intensity. The selective response of C4MA was investigated in the presence of different co-existing competing ions. The limit of detection (LOD) of Al3+and S2O7 2− was calculated as 2.8 × 10−6 M and 2.6 × 10−7 M respectively. Sensor C4MA forms (1:1) stoichiometric complex with both Al3+ and S2O7 2− and their binding constants were calculated as 12.1 × 104 and 8.3 × 103 respectively. Complexes were also characterized through FT-IR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Beer PD, Gale PA (2001) Anion recognition and sensing: the state of the art and future perspectives. Angew Chem Int Ed 40:486–516

    Article  CAS  Google Scholar 

  2. De Silva AP, Gunaratne HQ, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, Rice TE (1997) Recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  3. Robinson GH (2003) Aluminium. Chem Eng News 81:54

    Article  CAS  Google Scholar 

  4. Das S, Dutta M, Das D (2013) Fluorescent probes for selective determination of trace level Al3+: recent developments and future prospects. J Anal Methods 5:6262–6285

    Article  CAS  Google Scholar 

  5. Azadbakht R, Rashidi S (2014) A new fluorescent chemosensor for Al3+ ion based on Schiff base naphthalene derivatives. Spectrochim Acta A Mol Biomol Spectrosc 127:329–334

    Article  CAS  PubMed  Google Scholar 

  6. Cronan CS, Walker WJ, Bloom PR (1986) Predicting aqueous aluminium concentrations in natural waters. Nature 324:140–143

    Article  CAS  Google Scholar 

  7. Darbre PD (2005) Aluminium, antiperspirants and breast cancer. J Inorg Biochem 99:1912–1919

    Article  CAS  PubMed  Google Scholar 

  8. Krejpcio Z, Wójciak RW (2002) The influence of Al3+ ions on pepsin and trypsin activity in vitro. Pol J Environ Stud 11:251–254

    CAS  Google Scholar 

  9. Vázquez M, Fabbrizzi L, Taglietti A, Pedrido RM, González-Noya AM, Bermejo MR (2004) A colorimetric approach to anion sensing: a selective chemosensor of fluoride ions, in which color is generated by anion-enhanced π delocalization. Angew Chem Int Ed 43:1962–1965

    Article  Google Scholar 

  10. Pflugrathand JW, Quiocho FA (1985) Sulphate sequestered in the sulphate-binding protein of salmonella typhimurium is bound solely by hydrogen bonds. Nature 314:257–260

    Article  Google Scholar 

  11. Galbraith SG, Wang Q, Li L, Blake AJ, Wilson C, Collinson SR, Lindoy LF, Plieger PG, Schrӧderand M, Tasker PA (2007) Anion selectivity in zwitterionic amide-functionalised metal salt extractants. Chem Eur J 13:6091–6107

    Article  CAS  PubMed  Google Scholar 

  12. Moyer BA, Custelcean R, Hay BP, Sessler JL, Bowman-James K, Day VW, Kang SO (2013) A case for molecular recognition in nuclear separations: sulfate separation from nuclear wastes. Inorg Chem 52:3473–3490

    Article  CAS  PubMed  Google Scholar 

  13. Jalava PI, Salonen RO, Pennanen AS, Happo MS, Penttinen P, Hälinen AI, Sillanp M, Hillamo R, Hirvonen MR (2008) Effects of solubility of urban air fine and coarse particles on cytotoxic and inflammatory responses in RAW 264.7 macrophage cell line. Toxicol Appl Pharmacol 229:146–160

    Article  CAS  PubMed  Google Scholar 

  14. Moyer BA, Delmau LH, Fowler CJ, Ruas A, Bostick DA, Sessler JL, Katayev E, Pantos GD, Llinares JM, Hossain MA, Kang SO, Bowman-James K (2007) In: Van Eldik R, Bowman-James K (eds) In advances in inorganic chemistry: template effects and molecular organisation, vol 59. Academia Press, London, p 175

    Google Scholar 

  15. Sasaki S, Yokoyama K, Tamiya E, Karube I, Hayashi C, Arikawa Y, Numata M (1997) Sulfate sensor using thiobacillus ferrooxidans. Anal Chim Acta 347:275–280

    Article  CAS  Google Scholar 

  16. Xu XR, Li HB, Gu JD, Paeng KJ (2004) Determination of iodate in iodized salt by reversed-phase high-performance liquid chromatography with UV detection. Chromatographia 60:721–723

    Article  CAS  Google Scholar 

  17. Huang Z, Ito K, Timerbaev AR, Hirokawa (2004) T speciation studies by capillary electrophoresis – simultaneous determination of iodide and iodate in seawater. Anal Bioanal Chem 378:1836–1841

    Article  CAS  PubMed  Google Scholar 

  18. Yebra MC, Cespón RM (2000) Fresenius J Anal Chem 367:24

    Article  CAS  PubMed  Google Scholar 

  19. Noone KR, Jain A, Verma KK (2007) Liquid-phase microextraction–gas chromatography–mass spectrometry for the determination of bromate, iodate, bromide and iodide in high-chloride matrix. J Chromatogr A 1148:145–151

    Article  Google Scholar 

  20. Gruber W, Herbauts J (1990) Analysis 18:12

    CAS  Google Scholar 

  21. Phokharatkul D, Karuwan C, Lomas T, Nacapricha D, Wisitsoraat A, Tuantranont A (2011) AAO–CNTs electrode on microfluidic flow injection system for rapid iodide sensing. Talanta 84:1390–1395

    Article  CAS  PubMed  Google Scholar 

  22. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J (2008) A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc Rev 37:1465–1472

    Article  CAS  PubMed  Google Scholar 

  23. Xu Z, Yoon J, Spring DR (2010) Fluorescent chemosensors for Zn(2+). Chem Soc Rev 39:1996–2006

    Article  CAS  PubMed  Google Scholar 

  24. Jianming L, Yuanyuan Y, Jing W, Xuyang Y, Ren L, Yangyang S et al (2015) Study of interaction between human serum albumin and three phenanthridine derivatives: fluorescence spectroscopy and computational approach. Spectrochim Acta A Mol Biomol Spectrosc 145:473–481

    Article  Google Scholar 

  25. Yuanyuan Y, Jianming L, Ren L, Yangyang S, Xiaoge L, Jing F (2014) The binding affinity of phthalate plasticizers-protein revealed by spectroscopic techniques and molecular modeling. Food Chem Toxicol 71:244–253

    Article  Google Scholar 

  26. Yuanyuan Y, Jianming L, Ren L, Qiao D, Jing F (2014) Binding of helicid to human serum albumin: a hybrid spectroscopic approach and conformational study. Spectrochim Acta A Mol Biomol Spectrosc 124:46–51

    Article  Google Scholar 

  27. Yuanyuan Y, Qiao D, Yajie Z, Xiaoge L, Xuyang Y, Yahui S, Jianming L (2016) Synthesis of imidazole derivatives and the spectral characterization of the binding properties towards human serum albumin. Spectrochim Acta A Mol Biomol Spectrosc 153:688–703

    Article  Google Scholar 

  28. Song Z, Xiao C, Dai Y, Fei Q, Huan Y, Feng G (2012) Fluorescence quenching amplification in silica nanosensors for Au3+. Nanotechnology 23:425501

    Article  PubMed  Google Scholar 

  29. Gunnlaugsson T, Glynn M, Tocci GM, Kruger PE, Pfeffer FM (2006) Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord Chem Rev 250:3094–3117

    Article  CAS  Google Scholar 

  30. Bell TW, Hext NM (2004) Supramolecular optical chemosensors for organic analytes. Chem Soc Rev 33:589–598

    CAS  PubMed  Google Scholar 

  31. Helal A, Kim HG, Ghosh MK, Choi CH, Kim SH, Kim HS (2013) New regioisomeric naphthol–thiazole based ‘turn-on’ fluorescent chemosensor for Al3+. Tetrahedron 69:9600–9608

    Article  CAS  Google Scholar 

  32. Meng Q, Liu H, Chenga S, Cao C, Ren J (2012) A novel molecular probe sensing polynuclear hydrolyzed aluminum by chelation-enhanced fluorescence. Talanta 99:464–470

    Article  CAS  PubMed  Google Scholar 

  33. Cao L, Jia C, Huang Y, Zhang Q, Wang N, Xue Y, Duc D (2014) A highly selective fluorescence turn-on detection of Al3+ and Ca2+ based on a coumarin-modified rhodamine derivative. Tetrahedron Lett 55:4062–4066

    Article  CAS  Google Scholar 

  34. Dhara A, Jana A, Konar S, Ghatak SK, Ray S, Das K, Bandyopadhyay A, Guchhait N, Kar SK (2013) A novel rhodamine-based colorimetric chemodosimeter for the rapid detection of Al3+ in aqueous methanol: fluorescent ‘OFF–ON’ mechanism. Tetrahedron Lett 54:3630–3634

    Article  CAS  Google Scholar 

  35. Park HM, Oh BN, Kim JH, Qiong W (2011) Fluorescent chemosensor based-on naphthol–quinoline for selective detection of aluminum ions. Tetrahedron Lett 52:5581–5584

    Article  CAS  Google Scholar 

  36. Hoque MN, Basuand A, Das G (2014) Fluorescence turn-on sensor for sulfate ion in aqueous medium using tripodal-Cu2+ ensemble. J Fluoresc 24:411–416

    Article  CAS  PubMed  Google Scholar 

  37. Cao L, Jiang R, Zhu Y, Wang X, Li Y, Li Y (2014) Synthesis of 1,2,3-Triazole-4-carboxamide-containing foldamers for sulfate recognition. Eur J Org Chem 2014:2687–2693

    Article  CAS  Google Scholar 

  38. Reyheller C, Kubik S (2007) Selective sensing of sulfate in aqueous solution using a fluorescent bis(cyclopeptide). Org Lett 9:5271–5274

    Article  CAS  PubMed  Google Scholar 

  39. Zhang M, Liu YQ, Ye BC (2011) Colorimetric assay for sulfate using positively-charged gold nanoparticles and its application for real-time monitoring of redox process. Analyst 136:4558–4562

    Article  CAS  PubMed  Google Scholar 

  40. Haugland RP (2002) Handbook of fluorescent probes and research chemicals, 9th edn. Molecular Probes, Eugene

    Google Scholar 

  41. Formica M, Fusi V, Giorgi L, Micheloni M (2012) New fluorescent chemosensors for metal ions in solution. Coord Chem Rev 256:170–192

    Article  CAS  Google Scholar 

  42. Lee JY, Kim SK, Jung JH, Kim JS (2005) Bifunctional fluorescent Calix[4]arene chemosensor for both a cation and an anion. J Org Chem 70:1463–1466

    Article  CAS  PubMed  Google Scholar 

  43. Zhan J, Wen L, Miao F, Tian D, Zhua X, Li H (2012) Synthesis of a pyridyl-appended calix[4]arene and its application to the modification of silver nanoparticles as an Fe3+ colorimetric sensor. New J Chem 36:656–661

    Article  CAS  Google Scholar 

  44. Kao TL, Wang CC, Pan YT, Shiao YJ, Yen JY, Shu CM, Lee GH, Peng SM, Chung WS (2005) Upper Rim Allyl- and Arylazo-coupled Calix[4]arenes as highly sensitive chromogenic sensors for Hg2+ ion. J Org Chem 70:2912–2920

    Article  CAS  PubMed  Google Scholar 

  45. Miyaji H, Sessler JL (2001) Off-the-shelf colorimetric anion sensors. Angew Chem Int Ed 40:154–157

    Article  CAS  Google Scholar 

  46. Othman AB, Lee JW, Huh YD, Abidi R, Kim JS, Vicens J (2007) A novel pyrenyl-appended tricalix[4]arene for fluorescence-sensing of Al(III). Tetrahedron 63:10793–10800

    Article  Google Scholar 

  47. Brunetti E, Picron JF, Flidrova K, Bruylants G, Bartik K, Jabin I (2014) Fluorescent chemosensors for anions and contact ion pairs with a cavity-based selectivity. J Org Chem 79:6179–6188

    Article  CAS  PubMed  Google Scholar 

  48. Soroka K, Vithanage RS, Phillips DA, Walker B, Das Gupta PK (1987) Fluorescence properties of metal complexes of 8-hydroxyquinoline-5-sulfonic acid and chromatographic applications. Anal Chem 59:629–636

    Article  CAS  Google Scholar 

  49. Maity D, Govindaraju T (2010) Conformationally constrained (coumarin−triazolyl−bipyridyl) click fluoroionophore as a selective Al3+ sensor. Inorg Chem 49:7229–7231

    Article  CAS  PubMed  Google Scholar 

  50. Qazi MA, Ocak Ü, Ocak M, Memon S (2013) An excellent copper selective chemosensor based on calix[4]arene framework. Anal Chim Acta 761:157–168

    Article  CAS  PubMed  Google Scholar 

  51. Solangi IB, Bhatti AA, Qazi MA, Memon S, Bhanger MI (2012) Selective cation recognition by p-tetranitrsocalix [4] arene. Pak J Anal Environ Chem 13:129–136

    CAS  Google Scholar 

  52. Qazi MA, Qureshi I, Memon S (2011) Analytical evaluation of Cu2+ selective behavior of calix [4] arene derivative. J Fluoresc 21:1703–1711

    Article  CAS  PubMed  Google Scholar 

  53. Memon S, Bhatti AA, Ocak U, Ocak M (2015) New calix[4]arene based highly selective fluorescent probe for Al3+ and I. Anal Methods 7:5114–5121

    Article  CAS  Google Scholar 

  54. Memon S, Bhatti AA, Ocak Ü, Ocak M (2015) Calix[4]arene based highly efficient fluorescent S for Au3+ and I. J Fluoresc 25:1507–1515

    Article  CAS  PubMed  Google Scholar 

  55. Memon, S, Bhatti, AA, Ocak, Ü, Ocak, M (2015) Cu2+ selective chromogenic behavior of calix[4]arene derivative. Pol Arom Com. doi:10.1080/10406638.2014.994070

  56. Memon S, Bhatti AA, Bhatti AA, Ocak Ü, Ocak M (2015) Synthesis and chromogenic behavior exploration of a new calix[4]arene derivative. J Iran Chem Soc 12:1739–1746

  57. Gutsche CD, Iqbal M, Stewart D (1986) Calixarenes. 19. Syntheses procedures for p-Tert-butylcalix[4]arene. J Org Chem 51:742–745

    Article  CAS  Google Scholar 

  58. Maity D, Chakraborty A, Gunupuruand R, Paul P (2011) Calix[4]arene based molecular sensors with pyrene as fluoregenic unit: effect of solvent in ion selectivity and colorimetric detection of fluoride. Inorg Chim Acta 372:126–135

    Article  CAS  Google Scholar 

  59. Harris DC (1995) Quantitative chemical analysis, 4th edn. W.H. Freeman and Company, New York

    Google Scholar 

  60. Chow CF, Lam MHW, Wong WY (2004) A heterobimetallic ruthenium(II)−copper(II) donor−acceptor complex as a chemodosimetric ensemble for selective cyanide detection. Inorg Chem 43:8387–8393

    Article  CAS  PubMed  Google Scholar 

  61. Liang Z, Liu Z, Gao Y (2007) Synthesis, characterization and photochromic studies of three novel calix[4]arene–schiff bases. Spectrochim Acta A 68:1231–1235

    Article  Google Scholar 

  62. Qiuping H, Yuling L, Zhengqiang L, Rongzheng W, Yuan G, Yiling B, Qingzeng Z (2014) A new rhodamine-based dual chemosensor for Al3+ and Cu2+. Tetrahedron Lett 55:4912–4916

    Article  Google Scholar 

  63. Echabaane M, Rouis A, Bonnamour I, Ben Ouada H (2013) Studies of aluminum (III) ion-selective optical sensor based on a chromogenic calix[4]arene derivative. Spectrochim Acta A Mol Biomol Spectrosc 115:269–274

    Article  CAS  PubMed  Google Scholar 

  64. Lu P, Zhaojuan Z, Xiaoyan W, Ruirui W, Kai L, Yu X, Aijun T (2014) A ratiometric fluorescent chemosensor for Al3+ in aqueous solution based on aggregation-induced emission and its application in live-cell imaging. Anal Chim Acta 829:54–59

    Article  Google Scholar 

  65. Jang YK, Nama UC, Kwon HL, Hwang IH, Kim C (2013) A selective colorimetric and fluorescent chemosensor based-on naphthol for detection of Al3+ and Cu2+. Dyes Pigments 99:6–13

    Article  CAS  Google Scholar 

  66. Dhara A, Jana A, Guchhait N, Ghosh P, Kar SK (2014) Rhodamine-based molecular clips for highly selective recognition of Al3+ ions: synthesis, crystal structure and spectroscopic properties. New J Chem 38:1627–1634

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro/Pakistan and Scientific and Technological Research Council of Turkey (TUBITAK, B.02.1.TBT.0.06.01-216.01/895–6391) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahabuddin Memon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memon, S., Bhatti, A.A., Bhatti, A.A. et al. Calix[4]arene Based Dual Fluorescent Sensor for Al3+ and S2O7 2− . J Fluoresc 26, 1591–1599 (2016). https://doi.org/10.1007/s10895-016-1843-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1843-y

Keywords

Navigation