Skip to main content
Log in

Fluorescence Studies on New Potential Antitumoral Benzothienopyran-1-ones in Solution and in Liposomes

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence properties of four new potential antitumoral compounds, 3-arylbenzothieno[2,3-c]pyran-1-ones, were studied in solution and in lipid membranes of dipalmitoyl phosphatidylcholine (DPPC), egg yolk phosphatidylcholine (Egg-PC) and dioctadecyldimethylammonium bromide (DODAB). The 3-(4-methoxyphenyl)benzothieno[2,3-c]pyran-1-one (1c) exhibits the higher fluorescence quantum yields in all solvents studied. All compounds present a solvent sensitive emission, with significant red shifts in polar solvents for the methoxylated compounds. The results point to an ICT character of the excited state, more pronounced for compound 1c. Fluorescence (steady-state) anisotropy measurements of the compounds incorporated in liposomes of DPPC, DODAB and Egg-PC indicate that all compounds have two different locations, one due to a deep penetration in the lipid membrane and another corresponding to a more hydrated environment. In general, the methoxylated compounds prefer hydrated environments inside the liposomes. The 3-(4-fluorophenyl)benzothieno[2,3-c]pyran-1-one (1a) clearly prefers a hydrated environment, with some molecules located at the outer part of the liposome interface. On the contrary, the preferential location of 3-(2-fluorophenyl)benzothieno[2,3-c]pyran-1-one (1b) is in the region of lipid hydrophobic tails. Compounds with a planar geometry (1a and 1c) have higher mobility in the lipid membranes when phase transition occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DPPC:

Dipalmitoyl phosphatidylcholine

DODAB:

Dioctadecyldimethylammonium bromide

Egg-PC:

Egg yolk phosphatidylcholine

PC:

Phosphatidylcholine

References

  1. Queiroz M-JRP, Castanheira EMS, Pinto AMR, Ferreira ICFR, Begouin A, Kirsch G (2006) Synthesis of the first thieno-δ-carboline. Fluorescence studies in solution and in lipid vesicles. J Photochem Photobiol A: Chem 181:290–296

    Article  CAS  Google Scholar 

  2. Castanheira EMS, Abreu AS, Carvalho MSD, Queiroz M-JRP, Ferreira PMT (2009) Fluorescence studies on potential antitumoral heteroaryl and heteroannulated indoles in solution and in lipid membranes. J Fluorescence 19:501–509

    Article  CAS  Google Scholar 

  3. Castanheira EMS, Abreu AS, Queiroz M-JRP, Ferreira PMT, Coutinho PJG, Nazareth N, Nascimento MS-J (2009) Fluorescence properties of a potential antitumoral benzothieno[3, 2-b]pyrole in solution and lipid membranes. J Photochem Photobiol A: Chem 206:220–226

    Article  CAS  Google Scholar 

  4. Queiroz M-JRP, Calhelha RC, Vale-Silva LA, Pinto E, Nascimento MS-J (2009) Synthesis of novel 3-(aryl)benzothieno[2, 3-c]pyran-1-ones from Sonogashira products and intramolecular cyclization: antitumoral activity evaluation. Eur J Med Chem 44:1893–1899

    Article  PubMed  CAS  Google Scholar 

  5. Lasic DD (1995) In: Lasic DD, Barenholz Y (eds) Handbook of nonmedical applications of liposomes: from gene delivery and diagnostic to ecology, vol IV. CRC, New York, pp 1–32

    Google Scholar 

  6. Lasic DD, Ruff D (1998) In: Lasic DD, Papahadjoupoulos D (eds) Medical applications of liposomes. Elsevier, Netherlands, pp 353–394

    Chapter  Google Scholar 

  7. Pedroso de Lima MC, Simões S, Pires P, Faneca H, Düzgünes N (2001) Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 47:277–294

    Article  PubMed  CAS  Google Scholar 

  8. Lentz BR (1989) Membrane “fluidity” as detected by diphenylhexatriene probes. Chem Phys Lipids 50:171–190

    Article  CAS  Google Scholar 

  9. Feitosa E, Barreleiro PCA, Olofsson G (2000) Phase transition in dioctadecyldimethylammonium bromide and chloride vesicles prepared by different methods. Chem Phys Lipids 105:201–213

    Article  PubMed  CAS  Google Scholar 

  10. Demas JN, Crosby GA (1971) The measurement of photoluminescence quantum yields. A review. J Phys Chem 75:991–1024

    Article  Google Scholar 

  11. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76:1260–1264

    Article  CAS  Google Scholar 

  12. Dawson WR, Windsor MW (1968) Fluorescence yields of aromatic compounds. J Phys Chem 72:3251–3260

    Article  CAS  Google Scholar 

  13. Melhuish WH (1961) Quantum efficiencies of fluorescence of organic substances—effect of solvent and concentration of fluorescent solute. J Phys Chem 65:229–235

    Article  CAS  Google Scholar 

  14. Meech SR, Phillips D (1983) Photophysics of some common fluorescence standards. J Photochem 23:193–217

    Article  CAS  Google Scholar 

  15. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum, New York

    Google Scholar 

  16. Mataga N, Kubota T (1970) Molecular interactions and electronic spectra. Marcel Dekker, New York

    Google Scholar 

  17. Siano DB, Metzler DE (1969) Band shapes of electronic spectra of complex molecules. J Chem Phys 51:1856–1861

    Article  CAS  Google Scholar 

  18. Valeur B (2001) Molecular fluorescence—principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  19. Queiroz M-JRP, Castanheira EMS, Lopes TCT, Cruz YK, Kirsch G (2007) Synthesis of fluorescent tetracyclic lactams by a “one pot” three steps palladium-catalyzed borylation, Suzuki coupling (BSC) and lactamization. DNA and polynucleotides binding studies. J Photochem Photobiol A: Chem 190:45–52

    Article  CAS  Google Scholar 

  20. Lide DR (ed) (2002) Handbook of chemistry and physics, 83rd edn. CRC, Boca Raton

    Google Scholar 

  21. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  22. Jensen F (1999) Introduction to computational chemistry. Wiley, West Sussex

    Google Scholar 

  23. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4031

    Article  PubMed  Google Scholar 

  24. Turro NJ (1978) Modern molecular photochemistry. Benjamin/Cummings, Menlo Park

    Google Scholar 

  25. Papahadjopoulos D, Miller N (1967) Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals. Biochim Biophys Acta 135:624–638

    Article  PubMed  CAS  Google Scholar 

  26. Tilley L, Thulborn KR, Sawyer WH (1979) An assessment of the fluidity gradient of the lipid bilayer as determined by a set of n-(9-anthroyloxy)fatty acids (n = 2, 6, 9, 12, 16). J Biol Chem 254:2592–2594

    PubMed  CAS  Google Scholar 

  27. Bahri MA, Heyne BJ, Hans P, Seret AE, Mouithys-Mickalad AA, Hoebeke MD (2005) Quantification of lipid bilayer effective microviscosity and fluidity effect induced by propofol. Biophys Chem 114:53–61

    Article  PubMed  CAS  Google Scholar 

  28. Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37:814

    Article  CAS  Google Scholar 

  29. Banerjee R (2001) Liposomes: applications in medicine. J Biomater Appl 16:3–21

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Foundation for the Science and Technology (FCT)—Portugal and FEDER (Fundo Europeu de Desenvolvimento Regional), for financial support through Centro de Física (CFUM) and Centro de Química (CQ-UM) of University of Minho and through the Project PTDC/QUI/81238/2006. M.S.D. Carvalho and R.C. Calhelha acknowledge FCT for their PhD grants SFRH/BD/47052/2008 and SFRH/BD/29274/2006, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabete M. S. Castanheira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castanheira, E.M.S., Carvalho, M.S.D., Soares, D.J.G. et al. Fluorescence Studies on New Potential Antitumoral Benzothienopyran-1-ones in Solution and in Liposomes. J Fluoresc 21, 911–922 (2011). https://doi.org/10.1007/s10895-010-0607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0607-3

Keywords

Navigation