Skip to main content
Log in

Curcuminoid Ligands for Sensitization of Near-Infrared Lanthanide Emission

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescent lanthanide complexes were synthesized using a non-phenolic analog of curcumin as the principal chromophoric chelating ligand. Sensitized, near-infrared fluorescence is observed in these complexes as a result of photo-excitation of the chromophoric ligands, population of the molecular triplet state, and transfer of energy to the emitting lanthanide ion. For the purpose of intra-molecular energy transfer, the triplet states of curcuminoid ligands are more favorably matched with the excited electronic states of neodymium and ytterbium ions than those associated with less conjugated β-diketonate ligands. Sensitization of fluorescence through an internal redox reaction, thought to occur in other ytterbium complexes, is predicted to be less probable under the present circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Turro, P. K.-L. Fu, and P. M. Bradley (2002). In A. Sigel and H. Sigel (Eds.), The Lanthanides and Their Interrelations with Biosystems. Vol. 40: Met. Ions Biol. Syst., Marcel Dekker, New York, pp. 323–349.

    Google Scholar 

  2. J. Kido and Y. Okamoto (2002). Organo lanthanide metal complexes for electroluminescent materials. Chem. Rev. 102, 2357–2368.

    Article  PubMed  Google Scholar 

  3. G. A. Crosby, R. E. Whan, and R. M. Alire (1961). Intramolecular energy transfer in rare earth chelates. Role of the triplet state. J. Chem. Phys. 34, 743–748.

    Article  Google Scholar 

  4. M. Latva, H. Takalo, V. M. Mukkala, C. Matachescu, J. C. Rodríguez-Ubis, and J. Kankare (1997). Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J. Lumin. 75, 149–169.

    Article  Google Scholar 

  5. M. H. V. Werts, J. W. Hofstrat, F. A. J. Geurts, and J. W. Verhoeven (1997). Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III), and erbium(III) chelates. Chem. Phys. Lett. 276, 196–201.

    Article  Google Scholar 

  6. A. I. Voloshin, N. M. Shavaleev, and V. P. Kazakov (2001). Mono-thio-β-diketones—A new type of ligands suitable for sensitization of lanthanide luminescence. Infrared luminescence of intensely colored neodymium and ytterbium mono-thio-β-diketone chelates. J. Lumin. 93, 115–118.

    Article  Google Scholar 

  7. A. Beeby, R. S. Dickins, S. FitzGerald, L. J. Govenlock, C. L. Maupin, D. Parker, J. P. Riehl, G. Siligardi, and J. A. G. Williams (2000). Porphyrin sensitization of circularly polarized near-IR lanthanide luminescence: enhanced emission with nucleic acid binding. Chem. Commun. 1183–1184.

  8. T. J. Foley, B. S. Harrison, A. S. Knefely, K. A. Abboud, J. R. Reynolds, K. S. Schanze, and J. M. Boncella (2003). Facile preparation and photophysics of near-infrared luminescent lanthanide(III) monoporphyrinate complexes. Inorg. Chem. 42, 5023–5032.

    PubMed  Google Scholar 

  9. F. J. Steemers, W. Verboom, J. W. Hofstraat, F. A. J. Geurts, and D. N. Reinhoudt (1998). Near-infrared luminescence of Yb3+, Nd3+, and Er3+. Azatriphenylene complexes. Tetrahedron Lett. 39, 583– 7586.

    Article  Google Scholar 

  10. J. W. Hofstraat, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. N. Reinhoudt, M. H. V. Werts, and J. W. Verhoeven (1998). Near-IR luminescent rare earth ion-sensitizer complexes. J. Fluoresc. 8, 301–308.

    Article  Google Scholar 

  11. S. V. Shevchuk, N. V. Rusakova, A. M. Turianskaya, Y. V. Korovin, N. A. Nazarenko, and A. I. Gren (1998). Infrared luminescence of ytterbium ion complexes with calyx[4]resorcinarenes. J. Fluoresc. 8, 225–228.

    Article  Google Scholar 

  12. S. Faulkner, A. Beeby, R. S. Dickins, D. Parker, and J. A. Gareth Williams (1999). Generating a warm glow: Lanthanide complexes which luminescence in the near-IR. J. Fluoresc. 9, 45–49.

    Article  Google Scholar 

  13. G. A., Hebbink, S. I. Klink, P. G. B. Oude Alink, and F. C. J. M. van Veggel (2001). Visible and near-infrared light emitting calyx[4]arene-based ternary lanthanide complexes. Inorg. Chim. Acta 317, 114–120.

    Article  Google Scholar 

  14. N. M. Shavaleev, S. J. A. Pope, Z. R. Bell, S. Faulkner, and M. D. Ward (2003). Visible-light sensitization of near-infrared luminescence from Yb(III), Nd(III), and Er(III) complexes of 3,6-bis(2-pyridyl)tetrazine. Dalton Trans. 808–814.

  15. G. A. Crosby and M. Kasha (1958). Intramolecular energy transfer in ytterbium organic chelates. Spectrochim. Acta 10, 377–382.

    Article  Google Scholar 

  16. S. I. Klink, G. A., Hebbink, L. Grave, F. G. A. Peters, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat (2000). Near-infrared and visible luminescence from terphenyl-based lanthanide(III) complexes bearing amido and sulfonamido pendant arms. Eur. J. Org. Chem. 10, 1923–1931.

    Article  Google Scholar 

  17. W. D. Horrocks, J. P. Bolender, W. D. Smith, and R. M. Supkowski (1997). Photosensitized near-infrared luminescence of ytterbium(III) in proteins and complexes occurs via an internal redox process. J. Am. Chem. Soc. 119, 5972–5973.

    Article  Google Scholar 

  18. R. M. Supkowski, J. P. Bolender, W. D. Smith, L. E. L. Reynolds, and W. D. Horrocks (1999). Lanthanide ions as redox probes of long-range electron transfer in proteins. Coord. Chem. Rev. 185–186, 307–319.

    Article  Google Scholar 

  19. A. Beeby, R. S. Dickins, S. Faulkner, D. Parker, and J. A. G. Williams (1997). Luminescence from ytterbium(III) and its complexes in solution. Chem. Commun. 1401–1402.

  20. A. Beeby, S. Faulkner, D. Parker, and J. A. G. Williams (2001). Sensitized luminescence from phenanthridine appended lanthanide complexes: Analysis of triplet mediated energy transfer processes in terbium, europium, and neodymium complexes. J. Chem. Soc. Perkin Trans. 2, 1268–1273.

    Google Scholar 

  21. F. Ortica and M. A. J. Rodgers (2001). A laser flash photolysis study of curcumin in dioxane-water mixtures. Photochem. Photobiol. 74, 745.

    Article  PubMed  Google Scholar 

  22. P. H. Bong (2000). Spectral and photophysical behaviors of curcumin and curcuminoids. Bull. Korean Chem. Soc. 21, 81–86.

    Google Scholar 

  23. G. S. Spicer and J. D. H. Strickland (1958). The determination of microgram and sub-microgram amounts of boron. Part I. Absorptiometric determination using curcumin. Anal. Chim. Acta 18, 231–235.

    Article  Google Scholar 

  24. K. Krishnankutty and V. D. John (2002). Anti-tumour studies of metal chelates of synthetic curcuminoids. J. Exp. Clin. Res. 21, 219–224.

    Google Scholar 

  25. M. H. Krackov and H. E. Bellis (1997). US Patent 5,679,864, Process for the synthesis of curcumin-related compounds.

  26. A. Sundaryono, A. Nourmamode, C. Gardrat, A. Fritsch, and A. Castellan (2003). Synthesis and complexation properties of two new curcuminoid molecules bearing a diphenylmethane linkage. J. Mol. Struct. 649, 177–190.

    Article  Google Scholar 

  27. A. Sundaryono, A. Nourmamode, C. Gardrat, S. Grelier, G. Bravic, D. Chasseau, and A. Castellan (2003). Photochem. Photobiol. Sci. 2, 914–920.

    Article  PubMed  Google Scholar 

  28. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. G. Williams, and M. Woods (1999). Non-radiative deactivation of the excited states of europium, terbium, and ytterbium complexes by proximate energy-matched OH, NH, and CH oscillators: An improved luminescence method for establishing solution hydration states. J. Chem. Soc. Perkin Trans. 2, 493–504.

    Google Scholar 

  29. Y. Hasegawa, M. Miratsu, and G. R. Choppin (2001). Dehydration from tris[β-diketonato] lanthanoids(III) on the 1,10-phenanthroline adduct formation across lanthanoid series. Anal. Chim. Acta 428, 149–154.

    Article  Google Scholar 

  30. F. Dietze, A. F. Arrieta, and U. Zimmer (1997). pKa stability constants and UV/VIS spectral behaviour of selected curcumin analogues. Pharmazie 52, 302–306

    Google Scholar 

  31. W. G. Perkins and G. A. Crosby (1965). Crystal-field splitting in Yb3+ chelates. J. Chem. Phys. 42, 407–411.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Seltzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seltzer, M.D., Fallis, S., Hollins, R.A. et al. Curcuminoid Ligands for Sensitization of Near-Infrared Lanthanide Emission. J Fluoresc 15, 597–603 (2005). https://doi.org/10.1007/s10895-005-2832-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2832-8

Keywords

Navigation