Skip to main content
Log in

Spectroscopic Characterization of Eu(III) Complexes with New Monophosphorus Acid Derivatives of H4dota

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The luminescence lifetimes of europium(III) complexes with new monophosphorus acid derivatives of H4dota were measured by means of time-resolved laser-induced luminescence spectroscopy in H2O and D2O. The hydration numbers of these complexes were estimated using different empirical equations [Horrocks and Sudnick (1979) J. Am. Chem. Soc. 101 (1979) 334; Choppin and Barthelemy(1989) Inorg. Chem. 28, 3354–3357; Choppin and Bünzli Lanthanide probes in life, chemical and earth sciences. Theory and practice (1989); Kimura and Kato J. Alloys Comp. 275–277 (1998) 806; Parker (1999) J. Chem. Soc., Perkin Trans. 2, 493–503; Supkowski and Horroks (2002) Inorg. Chim. Acta. 340, 44–48]. It was shown that all the relationships gave similar results with a satisfactory precision. The hydration numbers of complexes of H3do3a and H4dota agreed with the literature values. One water molecule is coordinated in complexes of the new ligands. The results showed that the Choppin formula based on measurements only in H2O can be satisfactorily used for estimation of the hydration numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Edwards and S. Liu (2001). Bifunctional Chelators for Therapeutic Lanthanide Radiopharmaceuticals. Bioconjugate Chem. 12, 7–34.

    Article  Google Scholar 

  2. A. E. Merbach and É. Tóth (Eds.), (2001). The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. Wiley, Chichester.

    Google Scholar 

  3. P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer (1999). Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 99, 2293–2352.

    Article  PubMed  Google Scholar 

  4. J. C. G. Bünzli and G. R. Choppin (Eds.), (1989). Lanthanide probes in life, chemical and earth sciences. Theory and practice. Elsevier, Amsterdam.

    Google Scholar 

  5. P. R. Selvin (2002). Principles and Biophysical Applications of Luminescent Lanthanide Probes. Ann. Rev. Biophys. Biomol. Struct. 31, 275–302.

    Article  Google Scholar 

  6. D. Parker (2000). Luminescent lanthanide sensors for pH, pO2 and selected anions Coord. Coord. Chem. Rev. 205, 109–130.

    Article  Google Scholar 

  7. D. Parker, R. S. Disckins, H. Puschmann, C. Crossland, and J. A. K. Howard (2002). Being Excited by Lanthanide Coordination Complexes: Aqua Species, Chirality, Excited-State Chemistry, and Exchange Dynamics. Chem. Rev. 102, 1977–2010.

    Article  PubMed  Google Scholar 

  8. S. Faulkner and J. L. Matthews (2004). in J. A. McCleverty and T. J. Meyer (Eds.), Comprehensive Coordination Chemistry II, Elsevier, Amsterdam, Vol. 9, pp. 913–944.

    Google Scholar 

  9. S. Lis (2002). Luminescence spectroscopy of lanthanide(III) ions in solution. J. Alloys Comp. 341, 45–50.

    Article  Google Scholar 

  10. I. Lukeš, J. Kotek, P. Vojtíek, and P. Hermann (2001). Complexes of tetraazacycles bearing methylphosphinic/phosphonic acid pendant arms with copper(II), zinc(II) and lanthanides(III). A comparison with their acetic acid analogues. Coord. Chem. Rev. 216–217, 287–312.

    Article  Google Scholar 

  11. J. F. Desreux (1980). Nuclear magnetic resonance spectroscopy of lanthanide complexes with a tetraacetic tetraaza macrocycle. Unusual conformation properties. Inorg. Chem. 19, 1319–1324.

    Article  Google Scholar 

  12. J. Rudovský, P. Cígler, J. Kotek, P. Hermann, P. Vojtíek, I. Luke, J. A. Peters, L. V. Elst, and R. N. Muller (2005). Lanthanide(III) Complexes of a Mono(methylphosphonate) Analogue of H4dota: The Influence of Protonation of the Phosphonate Moiety on the TSAP/SAP Isomer Ratio and the Water Exchange Rate. Chem. Eur. J. 11, 2373–2384.

    Article  Google Scholar 

  13. M. Málková (2002). Diploma Thesis. Charles University, Prague.

    Google Scholar 

  14. X. Sun, M. Wuest, Z. Kovacs, A. D. Sherry, R. Motekaitis, Z. Wang, A. E. Martell, M. J. Welch, and C. J. Anderson (2003). In vivo behavior of copper-64-labeled ethanephosphonate tetraaza macrocyclic ligands. J. Biol. Inorg. Chem. 8, 217–225.

    Article  PubMed  Google Scholar 

  15. S. Lis, Z. Hnatejko, and Z. Strył a (2001). Device for measurements of selective luminescence excitation spectra of europium(III) based on nitrogen and dye laser system. Optica Applicata 31, 643–648.

    Google Scholar 

  16. W. W. De Horrocks Jr. and D. R. Sudnick (1979). Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 101, 334–340.

    Article  Google Scholar 

  17. W. De Horrocks Jr. and D. R. Sudnick (1981). Lanthanide ion luminescence probes of the structure of biological macromolecules. Acc. Chem. Res. 14, 384–392.

    Article  Google Scholar 

  18. P. Barthelemy and G. R. Choppin (1989). Luminescence study of complexation of europium and dicarboxylic acids. Inorg. Chem. 28, 3354–3357.

    Article  Google Scholar 

  19. T. Kimura and Y. Kato (1998). Luminescence study on hydration states of lanthanide(III)-polyaminopolycarboxylate complexes in aqueous solution. J. Alloys Comp. 275–277, 806–810.

    Article  Google Scholar 

  20. A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. G. Williams, and M. Woods (1999). Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: An improved luminescence method for establishing solution hydration states. J. Chem. Soc., Perkin Trans. 2, 493–503.

    Google Scholar 

  21. R. M. Supkowski and W. W. De Horrocks Jr. (1999). Displacement of Inner-Sphere Water Molecules from Eu3+ Analogues of Gd3+ MRI Contrast Agents by Carbonate and Phosphate Anions: Dissociation Constants from Luminescence Data in the Rapid-Exchange Limit. Inorg. Chem. 38, 5616–5619.

    Article  PubMed  Google Scholar 

  22. R. M. Supkowski and W. W. De Horrocks, Jr. (2002). On the determination of the number of water molecules coordinated to europium(III) ions in solution from luminescence decay lifetimes. Inorg. Chim. Acta 340, 44–48.

    Article  Google Scholar 

  23. T. Kimura and Y. Kato (1998). Luminescence study on the inner-sphere hydration number of lanthanide(III) ions in concentrated aqueous salt solutions in fluid and frozen states. J. Alloys Comp. 278, 92–97.

    Article  Google Scholar 

  24. S. Lis and G.R. Choppin (1992). Luminescence Lifetimes of Aqueous Europium Perchlorate, Chloride and Nitrate Solutions. Mat. Chem. Phys. 31, 159–161.

    Article  Google Scholar 

  25. A. Nehlig, M. Elhabiri, I. Billard, A.-M. Albrecht-Gary, and K. Lutzenkrichen (2003). Photoexcitation of europium(III) in various electrolytes: Dependence of the luminescence lifetime on the type of salts and the ionic strength. Radiochim. Acta 91, 37–43.

    Article  Google Scholar 

  26. E. N. Rizkalla and G. R. Choppin (1991). in K. A. Gschneidner Jr. and L. Eyring (Eds.), Hydration and Hydrolysis of Lanthanides Handbook on Physics and Chemistry of Rare Earths, Vol. 15, Elsevier, Amsterdam, 393–442.

    Google Scholar 

  27. T. Ozaki, M. Arisaka, T. Kimura, A. J. Francis, and Z. Yoshida (2002). Empirical method for prediction of the coordination environment of Eu(III) by time-resolved laser-induced fluorescence spectroscopy. Anal. Bioanal. Chem. 374, 1102–1104.

    Google Scholar 

  28. É. Tóth, O. M. N. Dhubhghail, G. Besson, L. Helm, and A. E. Merbach (1999). Coordination equilibrium—a clue for fast water exchange on potential magnetic resonance imaging contrast agents? Magn. Reson. Chem. 37, 701–708.

    Article  Google Scholar 

  29. S. Aime, M. Botta, M. Fasano, M. P. M. Marques, C. F. G. C. Geraldes, D. Pubanz, and A. E. Merbach (1997). Conformational and Coordination Equilibria on DOTA Complexes of Lanthanide Metal Ions in Aqueous Solution Studied by 1H-NMR Spectroscopy. Inorg. Chem. 36, 2059–2068.

    Article  PubMed  Google Scholar 

  30. F. Avecilla, J. A. Peters, and C. F. G. C. Geraldes (2003). X-ray Crystal Structure of a Sodium Salt of [Gd(DOTP)]5-: Implications for Its Second-Sphere Relaxivity and the 23Na NMR Hyperfine Shift Effects of [Tm(DOTP)]5-. Eur. J. Inorg. Chem. 4179–4186.

  31. P. Gawryszewska, L. Jerzykiewicz, M. Pietraszkiewicz, J. Legendziewicz, and J. P. Riehl (2000). Photophysics and Crystal Structure of a Europium(III) Cryptate Incorporating 3,3′-Biisoquinoline-2,2′-dioxide. Inorg. Chem. 39, 5365–5372.

    Article  PubMed  Google Scholar 

  32. S. Lis, J. Konarski, Z. Hnatejko, and M. Elbanowski (1994), A Luminescence Study of Eu(III) and Tb(III) Complexes with Aminopolycarboxylic Acid Ligands. J. Photochem. Photobiol. A: Chem 79, 25–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Táborský, P., Svobodová, I., Hnatejko, Z. et al. Spectroscopic Characterization of Eu(III) Complexes with New Monophosphorus Acid Derivatives of H4dota. J Fluoresc 15, 507–512 (2005). https://doi.org/10.1007/s10895-005-2824-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2824-8

Keywords

Navigation