Skip to main content
Log in

Rheofluorescence Technique for the Study of Dilute MEH-PPV Solutions in Couette Flow

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel rheofluorescence technique has been developed that permits the study of fluorescent polymers in a near-uniform shear field. The system has been used to examine the effects of shear flow on dilute solutions of two commercially available samples of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) in toluene and xylene. A detailed description of the instrument is provided, along with data that confirm a small probe molecule, Rhodamine 6G, is not affected by simple shear flow. MEH-PPV solutions were examined over two decades of concentration for rheochromism indicative of changes in segment length, and shear-induced orientation revealed by measurements of the steady state emission anisotropy. It is demonstrated that these dilute samples were not influenced by shear rates in the range 100–1000 s−1. In contrast, MEH-PPV dispersed in a concentrated polystyrene solution showed evidence of shear-induced orientation and rheochromism. This new technique shows promise for investigating the impact of shear flow on the conformation of conjugated polymers employed in organic optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes (1990). Light-emitting diodes based on conjugated polymers. Nature 347(6293), 539–541.

    Google Scholar 

  2. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. dos Santos, J. L. Brédas, M. L¨gdlund, and W. R. Salaneck (1999). Electroluminescence in conjugated polymers. Nature 397(6715), 121– 128.

    Google Scholar 

  3. S. I. E. Vulto, M. Buechel, P. C. Duineveld, F. Dijksman, M. Hack, M. Kilitziraki, M. M. de Kok, E. A. Meulenkamp, J.-E. J. M. Rubingh, P. van de Weijer, and S. H. de Winter (2004). Technology and materials for full-color polymer light-emitting displays. Proc. SPIE 5214, 40–49.

    Google Scholar 

  4. B. J. Schwartz (2003). Conjugated polymers as molecular materials: How chain conformation and film morphology influence energy transfer and interchain interactions. Annu. Rev. Phys. Chem. 54(1), 141–172.

    Google Scholar 

  5. J. Kim (2002). Assemblies of conjugated polymers. Intermolecular and intramolecular effects on the photophysical properties of conjugated polymers. Pure Appl. Chem. 74(11), 2031–2044.

    Google Scholar 

  6. B.-J. de Gans, P. C. Duineveld, and U. S. Schubert (2004). Inkjet printing of polymers: State-of-the-art and future developments. Adv. Mater. 16(3), 203–213.

    Google Scholar 

  7. R. G. Larson (1999). The Structure and Rheology of Complex Fluids. Oxford University Press, New York.

    Google Scholar 

  8. M. Doi and S. F. Edwards (1986). The theory of polymer dynamics. Oxford University Press, Oxford.

    Google Scholar 

  9. P. G. de Gennes (1991). Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca.

    Google Scholar 

  10. D. E. Dunstan, E. K. Hill, and Y. Wei (2004). Direct measurement of polydiacetylene 4-butoxycarbonylmethylurethane segment orientation and distortion in shear: Semi-dilute solutions. Macromolecules 37(4), 1663–1665.

    Google Scholar 

  11. S. J. Gason, D. E. Dunstan, T. A. Smith, D. Y. C. Chan, L. R. White, and D. V. Boger (1997). Rheooptical studies of polydiacetylene solutions. J. Phys. Chem. B 101(39), 7732–7735.

    Google Scholar 

  12. S. J. Gason, J. Cooper-White, D. E. Dunstan, and D. V. Boger (2001). A spectroscopic study of polyelectrolyte solutions under shear. Polymer 42, 6981–6989.

    Google Scholar 

  13. M. A. Winnik (1986). In N.A.T.O. A.S.I. Series, Series C, Mathematical and Physical Sciences, vol. 182, D. Reidel Publishing Company, Dordrecht.

    Google Scholar 

  14. L. Monnerie (1985). In D. Phillips (Ed.), Polymer Photophysics, Chapman and Hall, London, UK, pp. 279–339.

    Google Scholar 

  15. H. Zettl, W. Hafner, A. Boker, H. Schmalz, M. Lanzendorfer, A. H. E. Muller, and G. Krausch (2004). Fluorescence Correlation Spectroscopy of single dye-labeled polymers in organic solvents. Macromolecules 37(5), 1917–1920.

    Google Scholar 

  16. G. G. Fuller (1995). Optical Rheometry of Complex Fluids. Oxford University Press, New York.

    Google Scholar 

  17. A. J. Bur, R. E. Lowry, S. C. Roth, C. L. Thomas, and F. W. Wang (1991). Observations of shear-induced molecular orientation in a polymer melt using fluorescence anisotropy measurements. Macromolecules 24(12), 3715–3717.

    Google Scholar 

  18. S. Mani, M. F. Malone, H. H. Winter, J. L. Halary, and L. Monnerie (1991). Effects of shear on miscible polymer blends: In situ fluorescence studies. Macromolecules 24(19), 5451–5458.

    Google Scholar 

  19. D. E. Smith, H. P. Babcock, and S. Chu (1999). Single-polymer dynamics in steady shear flow. Science 283(5408), 1724–1727.

    Google Scholar 

  20. P. le Duc, C. Haber, G. Bao, and D. Wirtz (1999). Dynamics of individual flexible polymers in a shear flow. Nature 399(6736), 564–566.

    Google Scholar 

  21. Y. Wang, A. Warshawsky, C. Wang, N. Kahana, C. Chevallard, and V. Steinberg (2002). Fluorescent ultrahigh-molecular-weight polyacrylamide probes for dynamic flow systems: synthesis, conformational behaviour and imaging. Macromol. Chem. Phys. 203(12), 1833–1843.

    Google Scholar 

  22. C. W. Macosko (1994). Rheology: Principles, Measurements and Applications. VCH Publishers Inc, New York.

    Google Scholar 

  23. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy. Kluwer Academic/Plenum, NY.

    Google Scholar 

  24. F. Cacialli (1999). Conjugated and electroluminescent polymers. Curr. Opin. Colloid & Interface Sci. 4(2), 159–164.

    Google Scholar 

  25. T.-Q. Nguyen, V. Doan, and B. J. Schwartz (1999). Conjugated polymer aggregates in solution: Control of interchain interactions. J. Chem. Phys. 110(8), 4068–4078.

    Google Scholar 

  26. K. Walters (1975). Rheometry. Chapman & Hall, London.

    Google Scholar 

  27. S. J. Gason (2001). A spectroscopic study of macromolecular solutions and particulate suspensions under shear, PhD Thesis, University of Melbourne, Melbourne, Australia.

  28. S. J. Muller, R. G. Larson, and E. S. G. Shaqfeh (1989). A purely elastic transition in Taylor-Couette flow. Rheol. Acta 28, 499–503.

    Google Scholar 

  29. R. F. Kubin and A. N. Fletcher (1983). Fluorescence quantum yield of some rhodamine dyes. J. Lumin. 27(4), 455–462.

    Google Scholar 

  30. G. Porter, P. J. Sadkowski, and C. J. Tredwell (1977). Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy. Chem. Phys. Lett. 49(3), 416–420.

    Google Scholar 

  31. K. A. Selanger, J. Falnes, and T. Sikkeland (1977). Fluorescence lifetime studies of Rhodamine 6G in methanol. J. Phys. Chem. 81(20), 1960–1963.

    Google Scholar 

  32. V. E. Korobov and A. K. Chibisov (1978). Primary processes in the photochemistry of rhodamine dyes. J. Photochem. 9(5), 411–424.

    Google Scholar 

  33. W. Holzer, A. Penzkofer, S.-H. Gong, D. D. C. Bradley, X. Long, and A. Bleyer (1997). Effective stimulated emission and excited-state absorption cross-section spectra of poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and t-t′-didecyloxy-II-distyrylbenzene. Chem. Phys. 224, 315–326.

    Google Scholar 

  34. J. L. Brédas, J. Cornil, D. Beljonne, D. A. dos Santos, and Z. Shuai (1999). Excited-state electronic structure of conjugated oligomers and polymers: A quantum-chemical approach to optical phenomena. Acc. Chem. Res. 32(3), 267–276.

    Google Scholar 

  35. C. L. Gettinger, A. J. Heeger, J. M. Drake, and D. J. Pine (1994). A photoluminescence study of poly(phenylenevinylene) derivatives: The effect of intrinsic persistence length. J. Chem. Phys. 101(2), 1673–1678.

    Google Scholar 

  36. P. M. Cotts (1997). Molecular weight distribution and configuration of MEH-PPV in dilute solution. Polym. Preprints 38(1), 355– 356.

    Google Scholar 

  37. D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky, and P. F. Barbara (2000). Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations. Nature 405(6790), 1030–1033.

    Google Scholar 

  38. P. Kumar, T.-H. Lee, A. Mehta, B. Sumpter, R. M. Dickson, and M. D. Barnes (2004). Photon antibunching from oriented semiconducting polymer nanostructures. J. Am. Chem. Soc. 126(11), 3376– 3377.

    Google Scholar 

  39. T.-Q. Nguyen, I. B. Martini, J. Liu, and B. J. Schwartz (2000). Controlling interchain interactions in conjugated polymers: The effects of chain morphology on exciton-exciton annihilation and aggregation in MEH-PPV films. J. Phys. Chem. B 104(2), 237–255.

    Google Scholar 

  40. M. Zheng, F. Bai, and D. Zhu (1998). Photophysical process of MEH-PPV solution. J. Photochem. Photobiol. A 116, 143–145.

    Google Scholar 

  41. J. Kusba and J. R. Lakowicz (1999). Definition and properties of the emission anisotropy in the absence of cylindrical symmetry of the emission field: Application to the light quenching experiments. J. Chem. Phys. 111(1), 89–99.

    Google Scholar 

  42. R. B. Bird, C. F. Curtis, R. C. Armstrong, and O. Hassager (1987). Dynamics of polymeric liquids: Kinetic Theory. Wiley Interscience, New York.

    Google Scholar 

  43. A. Link and J. Springer (1993). Light scattering from dilute polymer solutions in shear flow. Macromolecules 26(3), 464–471.

    Google Scholar 

  44. W. Holzer, A. Penzkofer, H. Tillmann, and H.-H. H¨rhold (2004). Spectroscopic and travelling-wave lasing characterisation of Gilch-type and Horner-type MEH-PPV. Synthetic Met. 140(2–3), 155–170.

    Google Scholar 

  45. C. J. Collison, L. J. Rothberg, V. Treemaneekarn, and Y. Li (2001). Conformational effects on the photophysics of conjugated polymers: A two species model for MEH-PPV spectroscopy and dynamics. Macromolecules 34(7), 2346–2352.

    Google Scholar 

  46. S. S. Sartori, S. De Feyter, J. Hofkens, M. van der Auweraer, and F. C. De Schryver (2003). Host matrix dependence on the photophysical properties of individual conjugated polymer chains. Macromolecules 36(2), 500–507.

    Google Scholar 

  47. W. Holzer, M. Pichlmaier, A. Penzkofer, D. D. C. Bradley, and W. J. Blau (1999). Fluorescence spectroscopic behaviour of neat and blended conjugated polymer thin films. Chem. Phys. 246, 445–462.

    Google Scholar 

  48. D. Yavich, D. W. Mead, J. P. Oberhauser, and L. G. Leal (1998). Experimental studies of an entangled polystyrene solution in steady state mixed type flows. J. Rheol. 42(3), 671–695.

    Google Scholar 

  49. E. K. Hill, K. L. Chan, A. B. Holmes, and D. E. Dunstan (2004). “Fluorescence spectroscopy of poly(p-phenylenevinylene) derivatives in flow,” presented at International Conference on Synthetic Metals, ICSM’04, Wollongong, NSW.

  50. E. K. Hill, K. L. Chan, A. B. Holmes, and D. E. Dunstan (2005). Rheofluorescence studies of poly(p-phenylenevinylene) derivatives in simple shear flow. Synthetic Met. (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth K. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, E.K., Watson, R.L. & Dunstan, D.E. Rheofluorescence Technique for the Study of Dilute MEH-PPV Solutions in Couette Flow. J Fluoresc 15, 255–266 (2005). https://doi.org/10.1007/s10895-005-2625-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2625-0

Key Words

Navigation