Skip to main content
Log in

Metal-Enhanced Fluorescence from Plastic Substrates

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We report the first findings of Metal-Enhanced Fluorescence (MEF) from modified plastic substrates. In the past several years our laboratories have reported the favorable effects of fluorophores in close proximity to silver nanoparticles. These effects include, enhanced fluorescence intensities, (increased detectability), and reduced lifetimes, (enhanced fluorophore photostability). All of these reports have featured silver nanostructures and fluorophores which have been immobilized onto clean glass or quartz surfaces. In this report we show how plastic surfaces can be modified to obtain surface functionality, which in turn allows for silver deposition and therefore metal-enhanced fluorescence of fluorophores positioned above the silver using a protein spacer. Our findings show that plastic substrates are ideal surfaces for metal-enhanced phenomena, producing similar enhancements as compared to clean glass surfaces. Subsequently, we speculate that plastic substrates for MEF will find common place, as compared to the more expensive and less versatile traditional silica based supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Geddes and J. R. Lakowicz (2002). Metal-enhanced fluorescence. J. Fluoresc. 12(2), 121–129.

    Google Scholar 

  2. J. R. Lakowicz (2001). Radiative decay engineering: Biophysical and biomedical applications. Appl. Biochem. 298, 1–24.

    CAS  Google Scholar 

  3. J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Grcyzynski, and I. Gryczynski (2002). Radiative decay engineering 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer, Anal. Biochem. 301, 261–277.

    CAS  PubMed  Google Scholar 

  4. C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Fang, and J. R. Lakowicz (2003). Metal-enhanced fluorescence due to silver colloids on a planar surface: Potential applications of Indocyanine green to in vivo imaging. J. Phys. Chem. A 107, 3443–3449.

    CAS  Google Scholar 

  5. C. D. Geddes, K. Aslan, I. Gryczynski, J. Malicka, and J. R. Lakowicz (2004) in C. D. Geddes (Ed.) Noble Metal Nanostructure for Metal-Enhanced Fluorescence, Reviews in Fluorescence 2004, Springer, New York, pp. 365–401.

    Google Scholar 

  6. Y. Liu, D. Ganser, A. Schneider, P. Grodzinski, and N. Kroutchinina (2001). Microfabricated polycarbonate CE devices for DNA analysis. Anal. Chem. 73, 4196–4201.

    CAS  PubMed  Google Scholar 

  7. M. Boerner, M. Kohl, F. Pantenburg, W. Bacher, H. Hein, and W. Schomburg (1996). Microsyst. Technol. 2, 149–152.

    Google Scholar 

  8. M. A. Roberts, J. S. Rossier, P. Bercier, and H. Girault (1997). UV laser machined polymer substrates for the development of microdiagnostic systems. Anal. Chem. 69, 2035–2042.

    CAS  Google Scholar 

  9. L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. MacCrehan (1997). Fabrication of plastic microfluid channels by imprinting methods. Anal. Chem. 69, 4783–4789.

    CAS  PubMed  Google Scholar 

  10. J. Xu, L. Locascio, M. Gaitan, and C. S. Lee (2000). Room-temperature imprinting method for plastic microchannel fabrication. Anal. Chem. 72, 1930–1933.

    CAS  PubMed  Google Scholar 

  11. R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, D. J. Benvegnu, and H. H. Hooper (1997). Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal. Chem. 69, 2626–2630.

    CAS  PubMed  Google Scholar 

  12. L. Dauginet, A.-S. Duwez, R. Legras, and S. Demoustier-Champagne. Surface modification of polycarbonate and poly(ethyleneterephthalate) films and membranes by polyelectrolyte deposition. Langmuir 17, 3952–3957.

  13. Y. Xu, B. Vaidya, A. B. Patel, S. M. Ford, R. L. McCarley, and S. A. Soper (2003). Solid-phase reversible immobilization in microfluidic chips for the purification of dye-labeled DNA sequencing fragments. Anal. Chem. 75, 2975–2984.

    CAS  PubMed  Google Scholar 

  14. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, Kluwer, New York.

  15. W. Ward and T. J. McCarthy (1989) in H. F Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz (Eds.), Encyclopedia of Polymer Science and Engineering, 2nd ed. John Wiley and Sons, New York, 1989, suppl. vol. pp. 674–689.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslan, K., Badugu, R., Lakowicz, J.R. et al. Metal-Enhanced Fluorescence from Plastic Substrates. J Fluoresc 15, 99–104 (2005). https://doi.org/10.1007/s10895-005-2515-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2515-5

Keywords

Navigation