Skip to main content
Log in

Evaluation of Heat Transfer Augmentation in a Nanofluid-Cooled Microchannel Heat Sink

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Present investigation deals with appraising heat transfer enhancement of single phase microchannel heat sink (MCHS) by ultra fine Cu particle incorporation in base coolant fluid. The particle diameter is of nanometer size and base fluid in combination of nanoparticles is called nanofluid. Governing equations for fluid flow and heat transfer are based on well established “porous medium model” and accordingly, modified Darcy equation and two-equation model are employed. Appropriate equations for both fluid flow and heat transfer are derived and cast into dimensionless form. Velocity profile is obtained analytically and in order to solve conjugate heat transfer problem a combined analytical–numerical approach is employed. For heat transfer analysis, thermal dispersion model is adopted and latest proposed model for effective thermal conductivity – which considers the salient effect of interfacial shells between particles and base fluid – is integrated into model. The effects of dispersed particles concentration, thermal dispersion coefficient and Reynolds number are investigated on thermal fields and on thermal performance of MCHS. Additionally, the impact of turbulent heat transfer on heat transfer enhancement is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Abbreviations

A P :

wetted area per volume

\(\tilde{C}\) :

thermal conductivity ratio

C * :

thermal dispersion coefficient

C f :

fluid heat capacity

D :

group parameter, hA P H 2/(1 − ɛ)k s

Da:

Darcy number, K/H 2

D h :

channel hydraulic diameter

d P :

nanoparticle diameter

h :

interfacial heat transfer coefficient

\(\bar{h}\) :

average interfacial heat transfer coefficient

H :

channel height

K :

permeability

k d :

dispersed thermal conductivity of nanofluid

k f :

fluid thermal conductivity

k fe :

effective thermal conductivity of fluid, ɛ k f

k s :

solid thermal conductivity

k se :

effective thermal conductivity of solid, (1 − ɛ)k s

L :

channel height

Nu :

interfacial Nusselt number

\(\overline{\rm Nu}\) :

overall Nusselt number

p :

pressure

\(\bar{p}\) :

volume averaged pressure

P :

dimensionless pressure

Pe :

Peclet number

Pr :

Prandtl number

q W :

heat flux over bottom surface

T :

Temperature

u :

fluid velocity

\(\bar{u}\) :

volume averaged velocity

U :

dimensionless fluid velocity

w c :

channel width

w f :

wall thickness

X :

dimensionless axial coordinate

Y :

dimensionless vertical coordinate

Greek symbols: :

 

α:

thermal diffusivity

η:

channel aspect ratio, H/w C

ɛ:

porosity

μ:

viscosity

ρ:

density

θ:

dimensionless temperature, y-dependent part

ϕ:

nanoparticle concentration

Subscripts: :

 

b:

bulk

f:

fluid

nf:

nanofluid

m:

mean value

s:

solid

sh:

solid-like interfacial shell

w:

wall

References

  1. D. B. Tuckerman and R. F. W. Pease, IEEE Electron. Dev. Lett. EDL-2, 126–129 (1981)

  2. D. B. Tuckerman and R. F. W. Pease, in IEEE Proc. 32nd Electronics Conference, 145–149 (1982)

  3. M. Mahalingam, in Proceedings of IEEE 73, 1396–1404 (1985)

  4. T. Kishimoto and T. Ohsaki, in 25th Electrics Components Conference Proceedings, 595–601 (1986)

  5. R. J. Philips, in A. Bar-Cohen and A. D. Kraus (eds), Advances in Thermal Modelling of Electronic Components and Systems, vol 2. ASME, New York, (Chapter 3) (1990)

  6. Koh J. C. Y., Colony R. (1986). Int. Comm. Heat Mass Transfer 13:89–98

    Article  Google Scholar 

  7. Kim S. J., Kim D., Lee D. Y. (2000). Int. J. Heat Mass Transfer 43:1735–1748

    Article  MATH  Google Scholar 

  8. Zhao C. Y, Lu T. J. (2002). Int. J. Heat Mass Transfer 45:4857-4869

    Article  MATH  Google Scholar 

  9. Kim S. (2004). Heat Transfer Eng. 25:37–49

    Article  MATH  Google Scholar 

  10. Vafai K., Zhu L. (1999). Int. J. Heat Mass Transfer 42:2287–2297

    Article  Google Scholar 

  11. Vafai K., Huang P. C. (1994). ASME J. Heat Transfer 116:604–613

    Google Scholar 

  12. Huang P. C., Vafai K. (1994). AIAA J Thermophys Heat Transfer 8:563–573

    Google Scholar 

  13. Hadim A. (1994). ASME J Heat Transfer 116:465–472

    Article  Google Scholar 

  14. Bowers M. B., Mudawar I. (1994). ASME J Electr Packaging 116:290–305

    Google Scholar 

  15. Choi S. U. S. (1995). ASME FED 231:99–103

    Google Scholar 

  16. J.A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson, and S. Lee, in 1996 Fall Meeting of the Materials Research Society (MRS), Boston, USA (1996)

  17. Lee S., Choi S. U. S., Li S., Eastman J. A. (1999). ASME J Heat Transfer 121:280–289

    Google Scholar 

  18. Xuan Y. M., Li Q. (2000). Int. J. Heat Fluid Flow 21:58–64

    Article  Google Scholar 

  19. Eastman J. A., Choi S. U. S., Li S., Yu W., Thompson L. J. (2001). Appl. Phys. Lett. 78:718–720

    Article  Google Scholar 

  20. Keblinski P., Phillpot S. R. E., Choi S. U. S., Eastman J. A. (2002) Int. J. Heat Mass Transfer 45:855–863

    Article  MATH  Google Scholar 

  21. Xie H., Wang J., Xi T. G., Liu Y., Ai F. (2002). J. Appl. Phys. 91:4568–4572

    Article  Google Scholar 

  22. Wang X. W., Xu X. F., Choi S. U. S. (1999). J. Thermophys. Heat Transfer 13:474–480

    Google Scholar 

  23. Wen D. S., Ding Y. L. (2004). Int. J. Heat Mass Transfer 47:5181–5188

    Article  Google Scholar 

  24. Wang B. X., Zhou L. P., Peng X. F. (2003). Int J Heat Mass Transfer 46:2665–72

    Article  MATH  Google Scholar 

  25. Xue Q., Xu W. M. (2005). Mater. Chem. Phys. 90:298–301

    Article  Google Scholar 

  26. S. Lee and S. U. S. Choi, in 1996 International Mechanical Engineering Congress and Exhibition, Atlanta, USA (1996)

  27. Pak B. C., Cho Y. I. (1999). Heat Transfer 11:151–170

    Article  Google Scholar 

  28. Xuan Y. M., Roetzel W. (2000). Int. J. Heat Mass Transfer 43:3701–3707

    Article  MATH  Google Scholar 

  29. Li Q., Xuan Y. M. (2002). Sci. China, Series E 45:408–416

    Google Scholar 

  30. Xuan Y. M., Li Q. (2003). ASME J. Heat Transfer 125:151–155

    Article  Google Scholar 

  31. Khanafer K., Vafai K., Lightstone M. (2003). Int. J. Heat Mass Transfer 46:3639–3653

    Article  MATH  Google Scholar 

  32. Chein R., Huang G. (2005). Appl. Therm. Eng. 25:3104–3114

    Article  Google Scholar 

  33. Koo J., Kleinstreuer C. (2005). Int. J. Heat Mass Transfer 48:2652–2661

    Article  Google Scholar 

  34. Vafai K., Tien C. L. (1981). Int. J. Heat Mass Transfer 24:195–203

    Article  MATH  Google Scholar 

  35. Hunt M. L., Tien C. L. (1988). Int. J. Heat Mass Transfer 31:301–309

    Article  Google Scholar 

  36. Plumb O. A. (1983). ASME JSME Therm. Eng. Joint Conf. 2:17–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hessamoddin Abbassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbassi, H., Aghanajafi, C. Evaluation of Heat Transfer Augmentation in a Nanofluid-Cooled Microchannel Heat Sink. J Fusion Energ 25, 187–196 (2006). https://doi.org/10.1007/s10894-006-9021-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-006-9021-x

Keywords

Navigation