Skip to main content
Log in

On the Mechanism of Combustion of Thin Nanostructurized Silicon Plates in Oxygen at an Elevated Pressure

  • NANOSTRUCTURES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The physical mechanism of combustion of thin nanostructurized silicon plates in oxygen at an elevated pressure is considered. Based on the analysis of experimental data, it has been established that in combustion wave propagation over a nanostructurized silicon film, the liquid silicon droplets resulting from thermochemical destruction of etched silicon undergo combustion, and that the dominant process is the process of heterogeneous combustion of a gas suspension of silicon particles in oxygen. A physicochemical model is presented that describes the speed of combustion wave front propagation in a gas suspension of silicon particles in a liquid phase depending of the oxygen pressure and silicon particle diameter. Dependences of the combustion front speed and of the time of particle combustion on oxygen pressure and size of particles in a gas suspension have been calculated. It has been established that combustion of silicon particles follows the kinetic mechanism with inverse dependence of combustion time on pressure and its proportional dependence on the particle diameter. The dependence of the degree of fragmentation of particles in the combustion wave front on the structure of a nanostructurized sample and oxygen pressure has been calculated. Practically important recommendations for obtaining higher rates of combustion of nanostructurized silicon films at a lower oxygen pressure have been formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Spitzer, Energetic nano-materials: Opportunities for enhanced performances, J. Phys. Chem. Solids, 71, 100–108 (2010).

    Article  Google Scholar 

  2. B. A. Mason, Combustion performance of several nanosilicon-based nanoenergetics, J. Propul. Power, 29, No. 6, 1435–1444 (2013).

    Article  Google Scholar 

  3. V. N. Mironov, O. G. Penyazkov, K. N. Kasparov, E. A. Baranyshin, I. A. Ivanov, E. A. Vyazova, K. I. Delendik, and L. Yu. Roshchin, On the dynamics and temperature of combustion of a thin layer of porous silicon in an oxygen medium, Heat and Mass Transfer–2016, A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk (2017), pp. 101–114.

  4. S. I. Futko, I. A. Koznacheev, O. S. Rabinovich, V. N. Mironov, O. G. Penyazkov, E. A. Baranyshin, and P. N. Krivosheev, Kinetic aspects of combustion of thin nanostructurized silicon plates in oxygen at an elevated pressure, Heat and Mass Transfer–2017, A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk (2018), pp. 132–138.

  5. R. A. Yetter, Metal particle combustion and nanotechnology, Proc. Combust. Inst., 32, 1819–1838 (2009).

    Article  Google Scholar 

  6. M. Mulcahy and I. Smith, Kinetics of combustion of pulverized fuel: a review of theory and experiment, Rev. Pure Appl. Chem., 19, 81–108 (1969).

    Google Scholar 

  7. F.-D. Tang, S. Goroshin, and A. J. Higgins, Modes of particle combustion in iron dust flames, Proc. Combust. Inst., 33, 1975–1982 (2011).

    Article  Google Scholar 

  8. S. Goroshin, M. S. Bidabadi, and J. H. Lee, Quenching distance of laminar flame in aluminum dust clouds, Combust. Flame, 105, 147–160 (1996).

    Article  Google Scholar 

  9. S. Goroshin, I. Fomenko, and J. H. S. Lee, Burning velocities in fuel-rich aluminum dust clouds, Proc. Combust. Inst., 2, 1961–1967 (1996).

  10. C. Badiola and E. L. Dreizin, Combustion of micron-sized particles of titanium and zirconium, Proc. Combust. Inst., 34, 2237–2243 (2013).

    Article  Google Scholar 

  11. Y. Zong, R. J. Jacob, S. Li, and M. R. Zachariah, Size resolved high temperature oxidation kinetics of nano-sized titanium and zirconium particles, J. Phys. Chem. A, 119, 6171–6178 (2015).

    Article  Google Scholar 

  12. C. L. Yeh and K. K. Kuo, Ignition and combustion of boron particles, Prog. Energy Combust. Sci., 22, 511–541 (1996).

    Article  Google Scholar 

  13. T. Bazyn, H. Krier, and N. Glumac, Evidence for the transition from the diffusion-limit in aluminum particle combustion, Proc. Combust. Inst., 31, 2021–2028 (2007).

    Article  Google Scholar 

  14. B. E. Deal and A. S. Grove, General relationship for the thermal oxidation of silicon, J. Appl. Phys., 36, No. 12, 3770–3778 (1965).

    Article  Google Scholar 

  15. Y. C. Liao, A. M. Nienow, and J. T. Roberts, Surface chemistry of aerosolized nanoparticles: thermal oxidation of silicon, J. Phys. Chem. B, 110, 6190–6197 (2006).

    Article  Google Scholar 

  16. É. N. Rumanov and B. I. Khaikin, On propagation of a flame in a gas suspension of particles, Dokl. Akad. Nauk SSSR, 201, 144–147 (1971).

    Google Scholar 

  17. K. K. Kuo, Principles of Combustion, John Wiley & Sons, New York (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Futko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 92, No. 1, pp. 3–13, January–February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Futko, S.I., Koznacheev, I.A., Rabinovich, O.S. et al. On the Mechanism of Combustion of Thin Nanostructurized Silicon Plates in Oxygen at an Elevated Pressure. J Eng Phys Thermophy 92, 1–11 (2019). https://doi.org/10.1007/s10891-019-01901-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-019-01901-1

Keywords

Navigation