Skip to main content
Log in

Separation of Nonspherical Particles in a Hydrocyclone

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

On the basis of hydrodynamic equations, the structure of the flow of a suspension in a hydrocyclone and the separation of isothermal nonspherical particles in it were investigated numerically. A mathematical model is proposed for calculating the separation parameters of the indicated particles and their concentration field. It is shown that the most marked dependence of the separation parameters of suspension particles on their shape is characteristic of the particles whose sizes fall within the range 10 < dp < 50 μm and that the separation of such particles should be conducted taking into account the possible deviation of their shape from the spherical one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Povarov, Hydrocyclones at Concentrating Mills [in Russian], Nedra, Moscow (1978).

    Google Scholar 

  2. L. Svarovsky, Hydrocyclones, Technomic Publishing, London (1984).

    Google Scholar 

  3. Th. Neesse, D. Espig, and H. Schubert, Die Trennkorngrösse des Hydrozyklons bei Dünnstrom- und Dichtstrom-Trennungen, Proc. 1st European Symp. on Particle Classification in Gases and Liquids, Nuremberg, FRG (1984).

  4. Th. Neesse, W. Dallman, and D. Espig, Effect of turbulence on the efficiency of separation in hydrocyclones at the high feed solids concentration, Proc. 2nd Int. Conf. on Hydrocyclones, Bath, England (1984).

  5. Th. Neesse, V. Golyk, P. Kaniut, and V. Reinsch, Hydrocyclone control in grinding circuits, Miner. Eng., No. 17, 1237–1240 (2004).

  6. Th. Neesse, M. Schneider, V. Golyk, and H. Tiefel, Measuring the operating state of the hydrocyclone, Miner. Eng., No. 17, 697–703 (2004).

  7. Th. Neesse, M. Schneider, J. Dueck, V. Golyk, M. Buntenbach, and H. Tiefel, Hydrocyclone operation at the transition point rope/spray discharge, Miner. Eng., No. 17, 733–737 (2004).

  8. D. A. Baranov, A. M. Kutepov, and M. G. Lagutkin, Calculation of separation processes in hydrocyclones, Teor. Osn. Khim. Tekhnol., 30, No. 2, 117–122 (1996).

    Google Scholar 

  9. I. G. Ternovskii and A. M. Kutepov, Hydrocycloning [in Russian], Nauka, Moscow (1994).

    Google Scholar 

  10. A. M. Kutepov, M. G. Lagutkin, and V. I. Mushtaev, Separation of heterogeneous systems in a straight-through-fl ow cylindrical hydrocyclone, Khim. Neft. Mashinostr., No. 7, 14–17 (2002).

  11. A. M. Kutepov, M. G. Lagutkin, V. I. Mushtaev, and S. Yu. Bulychev, Simulation of the separation process in a straightthrough-flow cylindrical hydrocyclone, Teor. Osn. Khim. Tekhnol., 37, No. 3, 251–257 (2003).

    Google Scholar 

  12. A. M. Kutepov, M. G. Lagutkin, G. V. Pavlobskii, and V. I. Mushtaev, Separation of disperse systems in hydrocyclones with additional introduction of a dispersing gas, Teor. Osn. Khim. Tekhnol., 33, No. 5, 571–577 (1999).

    Google Scholar 

  13. V. O. Yablonskii, Influence of the regime parameters of a cylindrical hydrocyclone on the hydrodynamics of the flow of a nonlinearly viscoplastic fluid, Izv. Volgograd. Gos. Tekh. Univ., 7, No. 1 (128), 127–131 (2014).

  14. V. O. Yablonskii, Influence of the design of a hydrocyclone on the efficiency of the degassing of Newtonian liquids, Izv. Volgograd. Gos. Tekh. Univ., 6, No. 1 (104), 27–31 (2013).

  15. V. O. Yablonskii, Simulation of the separation of suspensions by the two-stage pressure flotation in a straight-throughflow cylindrical hydrocyclone, Zh. Prikl. Khim., 80, No. 3, 399–406 (2007).

    Google Scholar 

  16. V. O. Yablonskii and G. V. Ryabchuk, Analysis of the influence of the regime parameters of a cylindroconical hydrocyclone on the pressure flotation of the solid-phase particles in a suspension with a non-Newtonian disperse medium, Khim. Prom., 83, No. 2, 62–72 (2006).

    Google Scholar 

  17. V. O. Yablonskii and G. V. Ryabchuk, Flow of a rheologically complex suspension in a cylindroconical hydrocyclone, Teor. Osn. Khim. Tekhnol., 39, No. 4, 355–361 (2005).

    Google Scholar 

  18. J. G. Dueck, O. V. Matvienko, and Th. Neesse, Simulation of the hydrodynamics and separation in a hydrocyclone, Teor. Osn. Khim. Tekhnol., 34, No. 5, 478 –488 (2000).

    Google Scholar 

  19. O. V. Matvienko, Analysis of turbulence models and investigation of the structure of the flow in a hydrocyclone, J. Eng. Phys. Thermophys., 77, No. 2, 316–323 (2004).

    Article  Google Scholar 

  20. O. V. Matvienko and J. G. Dueck, Numerical investigation of the separation characteristics of a hydrocyclone in different regimes of loading of a solid phase, Teor. Osn. Khim. Tekhnol., 40, No. 1, 1–6 (2006).

    Google Scholar 

  21. O. V. Matvienko and E. V. Evtyushkin, Theoretical investigation of the process of cleaning oil polluted soil in hydrocyclone apparatuses, J. Eng. Phys. Thermophys., 80, No. 3, 502–510 (2007).

    Article  Google Scholar 

  22. O. V. Matvienko and E. V. Evtyushkin, Mathematical study of hydrocyclone dispersed phase separation in cleaning viscoplastic drilling fluids, J. Eng. Phys. Thermophys., 84, No. 2, 241–250 (2011).

    Article  Google Scholar 

  23. O. V. Matvienko and M. V. Agafontseva, Numerical investigation of the degassing process in a hydrocyclone, Vestn. Tomsk. Gos. Univ., Mat. Mekh., No. 4 (20), 107–118 (2012).

    Google Scholar 

  24. O. V. Matvienko, A.O. Andropova, and M. V. Agafontseva, Influence of the regime of flow of particles from a hydrocyclone on its separation characteristics, J. Eng. Phys. Thermophys., 87, No. 1, 24–37 (2014).

    Article  Google Scholar 

  25. A. Ya. Malkin and A. I. Isaev, Rheology: Conceptions, Methods, Applications [in Russian], Professiya, St. Petersburg (2007).

    Google Scholar 

  26. J. S. Laskowski, Coal Flotation and Fine Coal Utilization, Elsevier, Amsterdam (2001).

    Google Scholar 

  27. A. Gupta, D. Lilly, and N. Sayred, Swirling Flows [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  28. O. V. Matvienko, V. P. Bazuev, N. G. Turkasova, and A. I. Baigulova, Investigation of the modification of bitumen in an engineering mixer, Vestn. Tomsk. Gos. Arkh.-Str. Univ., No. 3, 202–213 (2013).

    Google Scholar 

  29. F. R. Menter, Zonal two equation k–ω turbulence models for aerodynamic flows, AIAA Paper, 93-2906 (1993).

  30. F. R. Menter and C. L. Rumsey, Assessment of two-equation turbulence models for transonic flows AIAA Paper, 94-2343 (1994).

  31. J. Piquet, Turbulent Flows: Models and Physics, Springer, Berlin (1999).

    Book  MATH  Google Scholar 

  32. W. P. Jones and B. E. Launder, The calculation of low Reynolds number phenomena with a two-equation model of turbulence, Int. J. Heat Mass Transf., 16, 1119−1130 (1973).

    Article  Google Scholar 

  33. D. C. Wilcox, A two-equation turbulence model for wall-bounded and free-shear flows, AIAA Paper, 2905 (1993).

  34. F. R. Menter, M. Kuntz, and R. Langtry, Ten years of industrial experience with the SST turbulence model, in: Turbulence, Heat and Mass Transfer 4, Begell House Inc. (2003), pp. 625–632.

  35. P. R. Spalart and M. Shur, On the sensitization of turbulence models to rotation and curvature, Aerospace Sci. Technol., 1, Issue 5, 297–302 (1997).

    Article  MATH  Google Scholar 

  36. P. Bradshaw, D. H. Ferriss, and N. P. Atwell, Calculation of boundary layer development using the turbulent energy equation, J. Fluid Mech., 28, 593–616 (1967).

    Article  Google Scholar 

  37. O. V. Matvienko, V. M. Ushakov, and E. V. Evtyushkin, Mathematical simulation of the turbulent transfer of the disperse phase in a turbulent flow, Vestn. Tomsk. Gos. Ped. Univ., No. 6, 50–54 (2004).

    Google Scholar 

  38. O. V. Matvienko, O. I. Daneiko, and T. A. Moreva, Determination of the shape of the free surface formed by the flow over piers, Vestn. Tomsk. Gos. Arkh.-Str. Univ., No. 1 (38), 101–107 (2013).

    Google Scholar 

  39. Yu. N. Grigor’ev, V. A. Vshivkov, and M. P. Fedoruk, Numerical Simulation by Methods of Particles in Cells [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (2004).

    Google Scholar 

  40. Bing Chen, Yucheng Li, and Guozhang Lai, A finite element model of gravity waves with free surface, Int. Offshore Polar Eng., 9, No. 4, 113–125 (1999).

    Google Scholar 

  41. O. M. Belotserkovskii and Yu. M. Davydov, Calculation of transonic “overcritical” flow regimes by the method of “large particles,” Zh. Vych. Mat. Mat. Fiz., 13, No. 1, 147–171 (1973).

    Google Scholar 

  42. L. G. Strakhovskaya, Numerical Simulation of Two-Phase Flows with a Moving Interface by the Method of Finite Superelements, Preprint No. 83 of the Inst. Prikl. Matem. im. M. V. Keldysha (2010).

  43. C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201–225 (1981).

    Article  MATH  Google Scholar 

  44. D. J. E. Harvie and D. F. Fletcher, A new volume of fluid advection algorithm: the stream scheme, J. Comput. Phys., 162, No. 1, 1–32 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  45. M. S. Kim, J. S. Park, and W. I. Lee, A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part II: Application to the cavity filling and sloshing problems, Int. J. Numer. Methods Fluids, 42, 791–812 (2003).

    Article  MATH  Google Scholar 

  46. S. Tiwari and J. Kuhnert, Modeling of two-phase flows with surface tension by finite pointset method (FPM), J. Comput. Appl. Math., 203, Issue 2, 376–386 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  47. C. Crowe, M. Sommerfeld, and Ya. Tsuji, Multiphase Flows with Droplets and Particles, CRC Press (1998).

  48. O. V. Matvienko, E. V. Evtyushkin, and A. O. Andropova, Investigation of the applicability of a drift model of particles for simulation of the transfer of a dispersed phase in a flow, Vestn. Tomsk. Gos. Univ., Mat. Mekh., No. 5 (37), 76–83 (2015).

    Google Scholar 

  49. O. V. Matvienko, A. V. Andriasyan, N. A. Mamadraimova, and A. O. Andropova, Investigation of the movement of a particle shaped as an elongated ellipsoid of revolution in a swirling flow, Vestn. Tomsk. Gos. Univ., Mat. Mekh., No. 3 (41), 74–85 (2016).

    Google Scholar 

  50. A. Haider and O. Levenspiel, Drag coefficient and terminal velocity of spherical and nonspherical particles, Powder Technol., 58, 63–70 (1989).

    Article  Google Scholar 

  51. O. V. Matvienko and A. M. Daneiko, Investigation of the collision interaction of particles in a flow, Izv. Vyssh. Ucheb. Zaved., 56, No. 9/3, 190–192 (2013).

    Google Scholar 

  52. G. M. Ostrovskii, Applied Mechanics of Inhomogeneous Media [in Russian], Nauka, St. Petersburg (2000).

    Google Scholar 

  53. D. Bradley, The Hydrocyclone, Pergamon Press, London (1965).

    Google Scholar 

  54. H. Trawinski, Der Hydrozyklon als Hilfsgerät zur Grundstoffveredelung, Chem. Ing. Tech., 25, No. 6, 331–340 (1953).

    Article  Google Scholar 

  55. T. C. Monredon, K. T. Hsien, and R. K. Rajamani, Fluid flow model of the hydrocyclone: an investigation of device dimensions, Int. J. Miner. Process., 35, No. 1, 65–83 (1992).

    Article  Google Scholar 

  56. S. Patankar, Numerical Methods of Solving Problems on Heat and Mass Exchange and Fluid Dynamics [Russian translation], Énergoatomizdat, Moscow (1983).

    Google Scholar 

  57. J. H. Ferziger and M. Perič, Computational Methods for Fluid Dynamics, Springer, Berlin (1996).

    Book  MATH  Google Scholar 

  58. B. Van Leer, Towards the ultimate conservative differencing scheme. IV. A new approach to numerical convection, J. Comput. Phys., 23, 276–299 (1977).

    Article  MATH  Google Scholar 

  59. A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357–393 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  60. J. P. Van Doormal and G. D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numer. Heat Transf., 7, 147−163 (1984).

    MATH  Google Scholar 

  61. O. V. Matvienko and A. O. Andropova, Investigation of the movement of a particle in a fluid flow near a moving wall, Vestn. Tomsk. Gos. Univ., Mat. Mekh., No. 4, 85–92 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Matvienko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 3, pp. 761–778, May–June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matvienko, O.V., Andropova, A.O. Separation of Nonspherical Particles in a Hydrocyclone. J Eng Phys Thermophy 91, 712–730 (2018). https://doi.org/10.1007/s10891-018-1794-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1794-z

Keywords

Navigation