Skip to main content
Log in

Influence of Acoustic and Electromagnetic Actions on the Properties of Aqueous Nanoparticle Dispersions Used as Tempering Liquids for Dental Cement

  • NANOSTRUCTURES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The authors have studied the physicochemical properties of aqueous dispersions containing carbon, silver, and iron nanoparticles which were produced by elastic-spark synthesis under the conditions of subaqueous spark discharge, and also the influence of preliminary acoustic and high-frequency electromagnetic action on them and the change in the functional indices of the glass-ionomer cement tempered by these dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Shlyakhto (Ed.), Nanotechnologies in biology and medicine: the status of the problem, in: Nanotechnologies in Biology and Medicine [in Russian], Prometei, St. Petersburg (2009).

  2. N. P. Erofeev, G. G. Zegrya, and D. B. Vcherashnii, Nanostructures: the physical essence and versions of medical application. http://prostonauka.com/nano/soderzhanie.

  3. A. I. Lebedev, Nanotechnologies in dental materials engineering, Stomatolog. Segodnya, 80, No. 10 (2008). www.dentoday.ru.

  4. G. I. Molchanov, Ultrasound in Pharmacy: the Status and Prospects for Using [in Russian], Meditsina, Moscow (1980).

  5. V. V. Azharonok, S. V. Goncharik, N. N. Chubrik, N. Kh. Belous, S. P. Rodtsevich, V. D. Koshevar, V. V. Rubanik, O. N. Makhanovskaya, and A. I. Orlovich, Acoustic-radiowave activation of tempering water for portland-cement systems, Élektron. Obrab. Mater., 47, No. 5, 50–60 (2011).

    Google Scholar 

  6. K. G. Lopat′ko and M. D. Mel′nichuk, Physics, Synthesis, and Biologic Functionality of Nanosize Objects [in Russian], Izd. Tsentr Nats. Univ. Bioresursov Prirodopol′zovaniya, Kiev (2013).

  7. K. G. Lopat′ko, V. V. Olishevskii, A. I. Marinin, and E. G. Aftandilyants, Formation of a nanosize fraction of metals in electric-spark treatment of granules, Élektron. Obrab. Mater., 49, No. 6, 80–85 (2013).

    Google Scholar 

  8. K. G. Lopat′ko, E. G. Aftandilyants, and Ya. V. Zaulichnyi, Production and use of nanoparticles containing copper and silver, Tr. Inst. Problem Materialovedeniya im. I. N. Frantsevicha, No. 1, 232–243 (2010).

  9. N. V. Bidenko, Glass-Ionomer Cements in Dentistry [in Russian], Kniga Plyus, Kiev (1999).

  10. A. V. Salova and V. M. Rekhachev, Encyclopedia of Filling Materials [in Russian], Meditsina, Moscow (2005).

  11. E. D. Shchukin, A. V. Pertsov, and E. A. Amelina, Colloid Chemistry [in Russian], Vysshaya Shkola, Moscow (2004).

  12. N. Kh. Belous, V. D. Koshevar, S. P. Rodtsevich, V. V. Azharonok, and S. V. Goncharik, Influence of high-frequency magnetic-pulse treatment of water on the technological properties of plasticized portland-cement systems, Vestsi Nats. Akad. Navuk Belarusi, No. 2, 110–114 (2010).

  13. A. I. Rybakov, V. S. Ivanov, and D. M. Karal′nik, Filling Materials [in Russian], Meditsina, Moscow (1981).

  14. V. D. Staroverov, Structure and Properties of Nanomodified Cement Stone, Candidate′s Dissertation in Technical Sciences, St. Petersburg (2009).

  15. A. D. Zimon, Colloid Chemistry of Nanoparticles [in Russian], Librokom, Moscow (2010).

  16. B. G. Ershov, Nanoparticles of metals in aqueous solutions: electron, optical, and catalytic properties, Zh. Ross. Khim. Obshch. im. D. I. Mendeleeva, 45, No. 3, 20–30 (2001).

    Google Scholar 

  17. V. I. Shevtsova and P. I. Gaiduk, Position of the surface-plasmon-resonance based in colloidal solutions of silver and gold nanoparticles, Vesti BGU, Ser. 1, No. 2, 15–18 (2012).

  18. S. B. C. Lehmann, C. Spickermann, and B. Kirchner, Quantum cluster equilibrium theory applied in hydrogen bond number studies of water. 1. Assessment of the quantum cluster equilibrium model for liquid water, J. Chem. Theory Comput., No. 5, 1640–1649 (2009).

  19. N. V. Eremina and N. S. Kostyukov, Molecular motion of water fixed on the solid surface under the action of the external electric field, Vestn. Amursk. GU, Issue 1, 27–32 (2005).

  20. G. V. Yukhnevich, Infrared Spetroscopy of Water [in Russian], Nauka, Moscow (1973).

  21. S. Tikhomirov and T. Kimstach, Raman spectroscopy — a promising method for investigating carbon nanomaterials, Analitika, No. 1, 28–32 (2011).

  22. A. V. Markin, Capabilities of Raman Spectroscopy as Applied to an Analysis of Nanostructured Objects, Candidate′s Dissertation in Chemistry, Saratov (2013).

  23. J. Brandmüller and H. Moser, Einführung in die Raman-Spektroscopie [Russian translation], Mir, Moscow (1964), pp. 552–562.

  24. É. Alimardonov, A. L. Gass, O. I. Kapusta, and S. A. Klimin, Spectra of giant Raman scattering by ethane adsorbed on silver, Pis′ma Zh. Tekh. Fiz., 41, Issue 8, 345–347 (1985).

  25. E. M. Semenova, S. A. Vorob′eva, Yu. A. Fedotova, V. G. Baev, and A. I. Lesnikovich, Synthesis and properties of composite nanoparticles "iron–noble metal," Sverdlovskie Chteniya, Issue 8, 147 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Azharonok.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 3, pp. 694–705, May–June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azharonok, V.V., Belous, N.K., Rodtsevich, S.P. et al. Influence of Acoustic and Electromagnetic Actions on the Properties of Aqueous Nanoparticle Dispersions Used as Tempering Liquids for Dental Cement. J Eng Phys Thermophy 89, 702–713 (2016). https://doi.org/10.1007/s10891-016-1429-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1429-1

Keywords

Navigation