Skip to main content
Log in

Physicochemical bases of autonomous maintenance of humidity and temperature in closed spaces

  • Heat and Mass Transfer in Porous and Dispersed Systems
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An inexpensive adsorption humidistat working in the static and dynamic regimes is proposed. This humidistat is designed for maintenance of the relative humidity and temperature in a closed space at levels (15–18%, 20–25°C) necessary for reliable storage of rare books, manuscripts, pictures, and museum valuables and for their safe transportation in the process of visiting exhibitions. Principles of maintenance of the relative humidity in a closed space with the use of chemical substances and autonomous thermostatting of this space are considered. Results of testing of some new moisture buffers under laboratory and real conditions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Storage of Works of Art in Museums, Practical Texbook [in Russian], GosNIIR, Moscow (1995).

  2. G. Tomphson, The Museum Environment, Butterworths, London–Boston (1986).

  3. N. Stolow, Conservation and Exhibitions (Packing, Transport, Storage and Environmental Considerations), Butterworths, London–Boston (1991).

  4. D. S. Carr and B. L. Harris, Solution for maintaining constant relative humidity, Ind. Eng. Chem., 41, No. 8, 2014–2015 (1949).

    Article  Google Scholar 

  5. I. S. Glaznev, I. V. Salnikova, V. N. Alekseev, et al., A new humidity buffer for showcases, Stud. Conserv., 54, 133–148 (2009).

    Google Scholar 

  6. Yu. I. Aristov, I. S. Glaznev, V. N. Alekseev, et al., ARTIC: A new humidity buffer for showcases, in: P. Engel (Ed.), Research in Book and Paper Conservation in Europe — a State of the Art, Impressum @ Verlag Berger, Horn/Wien, ISBN: 978-3-85028-490-5, pp. 207–240 (2009).

  7. A. E. Sheindlin, New Power Engineering [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  8. O. V. Dikhtievskii, G. V. Konyukhov, O. G. Martynenko, and I. F. Yurevich, Numerical modeling of an optimal heat accumulator with phase change, Inzh.-Fiz. Zh., 61, No. 5, 749–755 (1991).

    Google Scholar 

  9. M. Hamdan and F. Elwerr, Thermal energy storage using a phase change material, Solar Energy, 56, No. 2, 183–189 (1996).

    Article  Google Scholar 

  10. L. L. Vasiliev, V. S. Burak, A. G. Kulakov, et al., Heat storage device for preheating of the internal combustion engine for starting, Int. J. Therm. Sci., 38, 98–104 (1999).

    Article  Google Scholar 

  11. L. L. Vasiliev, V. S. Burak, A. G. Kulakov, et al., Latent heat storage modules for preheating internal combustion engines: application to a bus petrol engine, Appl. Therm. Eng., 20, 913–923 (2000).

    Article  Google Scholar 

  12. L. L. Vasiliev, M. I. Rabetskii, and V. G. Kiselev, Heat-transfer device for heating of extended horizontal objects, Inzh.-Fiz. Zh., 52, No. 1, 62–66 (1986).

    Google Scholar 

  13. M. I. Rabetskii, Vapor-Dynamic Thermosyphons, Preprint No. 11 of the Heat and Mass Transfer Institute, Academy of Sciences of BSSR, Minsk (1988).

  14. P. D. Dunn and D. A. Reay, Heat Pipes, Pergamon Press (1994).

  15. B. Palm, Hydrocarbons as refrigerants in small heat pump and refrigeration systems: review, Int. J. Refrig., 32, 552–563 (2008).

    Article  Google Scholar 

  16. S. W. Chi, Heat Pipes [Russian translation], Mashinostroenie, Moscow (1981).

    Google Scholar 

  17. L. L. Vasiliev, A. S. Zhuravlyov, M. N. Novikov, and L. L. Vasiliev Jr., Heat transfer with propane evaporation from a porous wick of heat pipe, J. Porous Media, No. 4 (2), 103–111 (2001).

    Google Scholar 

  18. L. Vasiliev, A. Zhuravlyov, A. Shapovalov, and V. Litvinenko, Vaporization heat transfer in porous wicks of evaporators, Arch. Thermodyn., 25, No. 3, 47–59 (2004).

    Google Scholar 

  19. L. Vasiliev, A. S. Zhuravlyov, and A. Shapovalov, Heat transfer enhancement in minichannels with micronanoparticles deposited on a heat-loaded wall, J. Enhanced Heat Transfer, 19, No. 1, 13–24 (2012).

    Article  Google Scholar 

  20. L. I. Roizen, D. G. Rachitskii, I. R. Rubin, et al., Heat transfer in boiling of nitrogen and Freon-113 on porous metal coatings, Teplofiz. Vys. Temp., 20, No. 2, 304–310 (1982).

    Google Scholar 

  21. K. Nishikawa and T. Ito, Augmentation of nucleate boiling heat transfer by prepared surfaces, in: Heat Transfer in Energy Problems, Hemisphere, Washington: D.C. (1982), pp. 111–118.

  22. R. F. Webb, Nucleate boiling on porous coated surfaces, Heat Transfer Eng., 4, Nos. 3–4, 71–82 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Vasiliev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 85, No. 5, pp. 899–908, September–October.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aristov, Y.I., Vasiliev, L.L., Glaznev, I.S. et al. Physicochemical bases of autonomous maintenance of humidity and temperature in closed spaces. J Eng Phys Thermophy 85, 977–986 (2012). https://doi.org/10.1007/s10891-012-0737-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-012-0737-3

Keywords

Navigation