Skip to main content
Log in

Investigation of semicommercial arc plants for fullerene-production

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Results of investigation of new-generation semicommercial arc plants for fullerene production are described. Increase in the operating efficiency of the plants is attained through their modification, in particular, by using a system of two-sided gas feed. Increase in the electrode diameter and rise in the working pressure make it possible to organize fullerene synthesis with a substantially smaller carbon loss. A qualitative and calculated interpretation of the results is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kratchmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Solid C60: a new form of carbon, Nature, 347, 354–359 (1990).

    Article  Google Scholar 

  2. V. D. Shimanovich, I. P. Smyaglikov, and A. I. Zolotovskii, Arc discharge in synthesis of fullerenes, Inzh.-Fiz. Zh., 71, No. 4, 669–674 (1998).

    Google Scholar 

  3. A. Goel, P. Hebgen, and J. B. Vander, Combustion synthesis of fullerenes and fullerenic nanostructures, Carbon, 40, No. 2, 177–182 (2002).

    Article  Google Scholar 

  4. R. P. Rodgers, P. T. Reilly, W. B. Whitten, and J. M. Ramsey, Soot-free synthesis of C60, Carbon, 41, No. 4, 687–692 (2003).

    Article  Google Scholar 

  5. D. V. Afanas’ev, I. O. Blinov, A. A. Bogdanov, G. A. Dyuzhev, V. I. Karataev, and A. A. Kruglikov, Formation of fullerenes in an arc discharge, Zh. Tekh. Fiz., 64, Issue 10, 76–85 (1994).

    Google Scholar 

  6. D. V. Afanas’ev, A. A. Bogdanov, G. A. Dyuzhev, V. I. Karataev, and A. A. Kruglikov, Formation of fullerenes in an arc discharge. II, Zh. Tekh. Fiz., 67, Issue 2, 125–132 (1997).

    Google Scholar 

  7. D. V. Afanas’ev, G. A. Dyuzhev, and A. A. Kruglikov, Carbon flows from a gas discharge in regimes optimal for obtaining fullerenes, Zh. Tekh. Fiz., 71, Issue 5, 134–135 (2001).

    Google Scholar 

  8. D. V. Afanas’ev, G. A. Dyuzhev, and A. A. Kruglikov, Influence of gas flows on the process of the formation of fullerenes, Zh. Tekh. Fiz., 71, Issue 7, 137–139 (2001).

    Google Scholar 

  9. N. I. Alekseev and G. A. Dyuzhev, Statistical model of the formation of fullerenes on the basis of quantumchemical calculations. II. Substantiation of the model and the kinetics of transformation into a fullerene, Zh. Tekh. Fiz., 71, Issue 5, 71–76 (2001).

    Google Scholar 

  10. N. I. Alekseev and G. A. Dyuzhev, Arc discharge with an evaporating anode (Why does the kind of a buffer gas influence the formation of fullerenes?), Zh. Tekh. Fiz., 71, Issue 10, 41–50 (2001).

    Google Scholar 

  11. N. I. Alekseev and G. A. Dyuzhev, Kinetics of carbon clusters in an arc discharge from atoms to fullerenes, Zh. Tekh. Fiz., 72, Issue 5, 121–129 (2002).

    Google Scholar 

  12. N. I. Alekseev and G. A. Dyuzhev, Calculation of a gas-plasma jet formed by an arc in the arc method of production of fullerenes, Zh. Tekh. Fiz., 75, Issue 11, 32–39 (2005).

    Google Scholar 

  13. N. I. Alekseev and G. A. Dyuzhev, Influence of the discharge chamber geometry on the efficiency of the arc technique of production of fullerenes. I. Axisymmetric case, Zh. Tekh. Fiz., 75, Issue 12, 16–25 (2005).

    Google Scholar 

  14. N. I. Alekseev and G. A. Dyuzhev, Influence of the discharge chamber geometry on the efficiency of the arc technique of production of fullerenes. II. Two-sided supply of a gas and consideration of the three-dimensional geometry, Zh. Tekh. Fiz., 75, Issue 12, 26–32 (2005).

    Google Scholar 

  15. G. A. Dyuzhev and V. I. Karataev, Where are the fullerenes formed in an arc discharge?, Fiz. Tverd. Tela, 34, Issue 9, 2795–2799 (1994).

    Google Scholar 

  16. G. A. Dyuzev, I. V. Basargin, B. M. Filippov, N. I. Alekseyev, and A. A. Bogdanov, Patent 7153398 USA, MPK C01B31/00. WO02/RU02/00083. Method for producing fullerene-containing carbon and device for carrying out the method, Published 26.12.2006.

  17. A. G. Ryabenko, Mechanisms of Formation and Interaction of Carbon Nanoclusters, Doctoral Dissertation (in Physics and Mathematics), Chernogolovka (2008).

  18. N. I. Alekseev, F. Chibante, and G. A. Dyuzhev, On the transformation of a carbon vapor in the gas jet of an arc discharge, Zh. Tekh. Fiz., 71, Issue 6, 122–130 (2001).

    Google Scholar 

  19. G. N. Abramovich, Theory of Turbulent Jets [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  20. G. I. Sukhinin and I. A. Nerushev, The mechanism underlying the formation of fullerenes in carbon vapor, Prikl. Mekh. Tekh. Fiz., 38, No. 4, 140–154 (1997).

    Google Scholar 

  21. S. Ramakroshnan, A. D. Stokes, and J. J. Lowke, An approximate model for high-current free burning arc, J. Phys. D.: Appl. Phys., 11, 2267–2280 (1978).

    Google Scholar 

  22. J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids [Russian translation], IL, Moscow (1961).

  23. N. I. Alekseyev and N. A. Charykov, Mechanism of selection of perfect fullerenes in arc synthesis, Russ. J. Phys. Chem., 82, No. 13, 18–26 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Alekseev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 84, No. 5, pp. 1008–1018, September–October, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseev, N.I., Filippov, B.M., Basargin, I.V. et al. Investigation of semicommercial arc plants for fullerene-production. J Eng Phys Thermophy 84, 1087–1098 (2011). https://doi.org/10.1007/s10891-011-0570-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0570-0

Keywords

Navigation