Skip to main content
Log in

Modern Maize Hybrids Have Lost Volatile Bottom-Up and Top-Down Control of Dalbulus maidis, a Specialist Herbivore

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Following damage by herbivores, many plants release volatiles that dissuade future conspecifics from feeding. In many crop plants however, induced volatiles mediating this kind of interactions among plants, herbivores and also their natural enemies have been altered through the process of domestication. The selection of crops for increased yield may have gone at a cost of defense, possibly including defense-related volatiles. Dalbulus maidis (Hemiptera: Cicadellidae), a specialist leafhopper that only feeds on Zea spp., is a vector of Corn Stunt Spiroplasma, a serious maize disease. Here, we compared the volatiles released following D. maidis attack by a maize landrace and two maize hybrids of temperate and tropical background. Also, we performed behavioral assays with the leafhopper contrasting healthy non-attacked maize seedlings versus attacked seedlings. The maize landrace produced more than 6-fold larger quantities of induced volatiles compared to the maize hybrids after herbivory. Corn leafhopper females were able to detect and significantly preferred the odors of healthy seedlings over the attacked ones only in the landrace. They did not discriminate between the attacked and non-attacked hybrids. Additionally, we found that the attraction of the parasitoid wasp Anagrus virlai (Hymenoptera: Mymaridae) to its host was diminished in the tested hybrids. The parasitoid was able to detect the odors of the attacked landrace, however it was unable to discriminate between healthy and attacked maize hybrid plants. These results suggest that those more domesticated germplasms may have lost the ability not only to release volatiles that avoid colonization of future herbivores, but also to attract their natural enemies in a tritrophic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/Quadrupole mass spectrometry, 4th edn. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  • Bellota E, Medina RF, Bernal JS (2013) Physical leaf defenses – altered by Zea life-history evolution, domestication, and breeding – mediate oviposition preference of a specialist leafhopper. Entomol Exp Appl 149:185–195

    Google Scholar 

  • Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87:133–142

    CAS  Google Scholar 

  • Camacho-Villa TC, Maxted N, Scholten M, Ford-Lloyd B (2005) Defining and identifying crop landraces. Plant Genet Res 3:373–384

    Google Scholar 

  • Carloni E, Carpane PD, Paradell S, Laguna I, Gimenez Pecci MP (2013) Presence of Dalbulus maidis (Hemiptera: Cicadellidae) and of Spiroplasma kunkelii in the temperate region of Argentina. J Econ Entomol 106:1574–1581

    CAS  PubMed  Google Scholar 

  • Carpane PD, Gimenez Pecci MP, Conci LR, Carloni E, Murúa L, Bisonard EM, Laguna IG (2012) Achaparramiento del maíz. In Gimenez Pecci MP, Laguna IG, Lenardón S (Eds) Enfermedades del maiz producidas por Virus y Mollicutes en Argentina. Ediciones INTA (ISBN 978-987-679-116-8), Buenos Aires, 1° edition. Pp 200

  • Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58

    CAS  PubMed  Google Scholar 

  • Chiappini E (2002) Anagrus fairyflies (Hymenoptera: Mymaridae), in Encyclopedia of Entomology, Capinera JL (ed), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 93–95

  • Chiappini E, Salerno G, Berzolla A, Iacovone A, Reguzzi MC, Conti E (2012) Role of volatile semiochemicals in host location by the egg parasitoid Anagrus breviphragma. Entomol Exp Appl 144:311–316

    CAS  Google Scholar 

  • Coll Aráoz MV, Jacobi VG, Fernandez PC, Luft Albarracin E, Virla EG, Hill JG, Catalan CAN (2019) Volatiles mediate host-selection in the corn hoppers Dalbulus maidis (Hemiptera: Cicadellidae) and Peregrinus maidis (Hemiptera: Delphacidae). Bull Entomol Res 109:633–642. https://doi.org/10.1017/S000748531900004X

    Article  CAS  PubMed  Google Scholar 

  • Davila Flores AM, DeWitt TJ, Bernal JS (2013) Facilitated by nature and agriculture: performance of a specialist herbivore improves with host-plant life history evolution, domestication, and breeding. Oecologia 173:1425–1437

    PubMed  Google Scholar 

  • De Lange ES, Balmer D, Mauch-Mani B, Turlings TCJ (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol 204:329–341

    Google Scholar 

  • De Lange ES, Farnier K, Gaudillat B, Turlings TCJ (2016) Comparing the attraction of two parasitoids to herbivore-induced volatiles of maize and its wild ancestors, the teosintes. Chemoecology 26:33–44

    Google Scholar 

  • De Lange ES, Laplanche D, Guo H, Xu W, Vlimant M, Erb M, Ton J, Turlings TCJ (2020) Spodoptera frugiperda caterpillars suppress herbivore-induced volatile emissions in maize. J Chem Ecol 46:344–360

    PubMed  Google Scholar 

  • Degen T, Dillmann C, Marion-Poll F, Turlings TCJ (2004) High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol 135:1928–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Degen T, Bakalovic N, Bergvinson D, Turlings TCJ (2012) Differential performance and parasitism of caterpillars on maize inbred lines with distinctly different herbivore-induced volatile emissions. PLoS One 7:e47589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Druetta M, Raspanti JG, Luna IM, Barontini J, Maurino MF, Ferrer M, Laguna IG, Giménez Pecci MP (2016) Incidencia y Prevalencia de Corn Stunt Spiroplasma en la Región Subtropical de Argentina. Análisis de la evolución de la enfermedad en el periodo 2011-2015. INTA. https://inta.gob.ar/sites/default/files/inta-incidencia_y_prevalencia_de_corn_stunt_spiroplasmaen_la_region_subtropical_periodo_2011-2015.pdf

  • Du YJ, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368

    CAS  Google Scholar 

  • Erb M, Foresti N, Turlings TCJ (2010) A tritrophic signal that attracts parasitoids to host-damaged plants withstands disruption by non-host herbivores. BMC Plant Biol 10:247–258

    PubMed  PubMed Central  Google Scholar 

  • Fritzsche-Hoballah ME, Tamò C, Turlings TCJ (2002) Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: is quality or quantity important? J Chem Ecol 28:951–968

    Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CAS  PubMed  Google Scholar 

  • Gouinguené S, Degen T, Turlings TCJ (2001) Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 11:9–16

    Google Scholar 

  • Gouinguene S, Alborn H, Turlings TCJ (2003) Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. J Chem Ecol 29:145–162

    CAS  PubMed  Google Scholar 

  • Gouinguené S, Pickett JA, Wadhams LJ, Birkett MA, Turlings TCJ (2005) Antennal electrophysiological responses of three parasitic wasps to caterpillar-induced volatiles from maize (Zea mays mays), cotton (Gossypium herbaceum), and cowpea (Vigna unguiculata). J Chem Ecol 31:1023–1038

    PubMed  Google Scholar 

  • Hill JG, Luft Albarracin E, Coll Araoz MV, Virla EG (2019) Effects of host species and host age on biological parameters of Anagrus virlai T. (Hymenoptera: Mymaridae), an egg parasitoid of Dalbulus maidis (Hemiptera: Cicadellidae) and Peregrinus maidis (Hemiptera: Delphacidae). Biol Control 131:74–80

    Google Scholar 

  • Hill JG, Aguirre MB, Bruzzone OA, Virla EG, Luft Albarracín EB (2020) Influence of adult diet on fitness and reproductive traits of the egg parasitoid Anagrus virlai, a potential biocontrol agent against the corn leafhopper. J Appl Entomol. https://doi.org/10.1111/jen.12762.2020

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    CAS  PubMed  Google Scholar 

  • Krugner R, Wallis CM, Walse SS (2014) Attraction of the egg parasitoid, Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae) to synthetic formulation of a (E)-β-ocimene and (E,E)-α-farnesene mixture. Biol Control 77:23–28

    CAS  Google Scholar 

  • Lou YG, Ma B, Cheng JA (2005) Attraction of the parasitoid Anagrus nilaparvatae to rice volatiles induced by the rice brown planthopper Nilaparvata lugens. J Chem Ecol 31:2357–2372

    CAS  PubMed  Google Scholar 

  • Luft Albarracin E, Triapitsyn SV, Virla EG (2017) Egg parasitoids of the corn leafhopper, Dalbulus maidis (Delong) (Hemiptera: Cicadellidae), in Argentina. Neotrop Entomol 46:666–677

    CAS  PubMed  Google Scholar 

  • Luft Albarracin E, Virla EG, Ordano M (2020) The corn leafhopper Dalbulus maidis, oviposits in concealed locations on corn plants to escape egg parasitism. An Acad Bras Ciênc in press

  • Maag D, Erb M, Bernal JS, Wolfender JL, Turlings TCJ, Glauser G (2015) Maize domestication and anti-herbivore defences: leaf-specific dynamics during early ontogeny of maize and its wild ancestors. PLoS One 10:e0135722

    PubMed  PubMed Central  Google Scholar 

  • Macfadyen S, Bohan DA (2010) Crop domestication and the disruption of species interactions. Basic Appl Ecol 11:116–125. https://doi.org/10.1016/j.baae.2009.11.008

    Article  Google Scholar 

  • Mao GF, Mo XC, Fouad H, Abbas G, Mo JC (2018) Attraction behaviour of Anagrus nilaparvatae to remote lemongrass (Cymbopogon distans) oil and its volatile compounds. Nat Prod Res 32:514–520

    CAS  PubMed  Google Scholar 

  • Martini X, Willett DS, Kuhns EH, Stelinsk LL (2016) Disruption of vector host preference with plant volatiles may reduce spread of insect-transmitted plant pathogens. J Chem Ecol 42:357–367

    CAS  PubMed  Google Scholar 

  • Moya Raygoza G (2016) Effect of herbivore insect pest age on fecundity and attractiveness to egg parasitoids in maize and its wild relative, teosinte. Ann Entomol Soc Am 109:724–729

    Google Scholar 

  • Mumm R, Hilker M (2005) The significance of background odour for an egg parasitoid to detect plants with host eggs. Chem Senses 30:337–343

    CAS  PubMed  Google Scholar 

  • Nault LR (1983) Origin of leafhopper vectors of maize pathogens in Mesoamerica. pp 75–78 In: Proceedings of the international maize virus diseases colloquium and workshop. Ohio Agricultural Research and Development Center, Wooster, Ohio, USA

  • Nault LR (1998) Dalbulus maidis identification, biology, ecology and pest status. In: Casela C, Renfro R, Krattiger AF (eds) Diagnosing maize diseases in Latin America. ISAAA, New York, pp 18–21

    Google Scholar 

  • Oluwafemi S, Bruce TJA, Pickett JA, Ton J, Birkett MA (2011) Behavioral responses of the leafhopper, Cicadulina storeyi China, a major vector of maize streak virus, to volatile cues from intact and leafhopper-damaged maize. J Chem Ecol 37:40–48

    CAS  PubMed  Google Scholar 

  • Oluwafemi S, Birkett MA, Caulfield J, Pickett JA (2012) Variability of volatile organic compounds emitted by seedlings of seven African maize varieties when infested by adult Cicadulina storeyi China leafhopper vectors of maize streak virus. Afr Crop Sci J 20:117–124

    Google Scholar 

  • Pickett JA, Griffiths DC (1980) Composition of aphid alarm pheromones. J Chem Ecol 6:349–360

    CAS  Google Scholar 

  • Prasanna BM (2012) Diversity in global maize germplasm: characterization and utilization. J Biosci 37:843–855

    CAS  PubMed  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    CAS  PubMed  Google Scholar 

  • Reisen WK (2010) Landscape epidemiology of vector-borne diseases. Annu Rev Entomol 55:461–483

    CAS  PubMed  Google Scholar 

  • Robert CAM, Erb M, Hiltpold I, Hibbard BE, Gaillard MDP, Bilat J, Degenhardt J, Cambet-Petit-Jean X, Turlings TC, Zwahlen C (2013) Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field. Plant Biotechnol J 11:628–639

    CAS  PubMed  Google Scholar 

  • Rosenthal JP, Dirzo R (1997) Effects of life history, domestication and agronomic selection on plant defence against insects: evidence from maizes and wild relatives. Evol Ecol 11:337–355

    Google Scholar 

  • Rossi D (2006) Evolución de los cultivares de maíz utilizados en la Argentina. Agromensajes de la Facultad UNR 36:3–10

    Google Scholar 

  • Sanders CJ, Pell JK, Poppy GM, Raybould A, Garcia Alonso M, Schuler TH (2007) Host-plant mediated effects of transgenic maize on the insect parasitoid Campoletis sonorensis (Hymenoptera: Ichneumonidae). Biol Control 40:362–369

    Google Scholar 

  • Santana P, Kumar L, Da Silva R, Pereira J, Picanco M (2019) Assessing the impact of climate change on the worldwide distribution of Dalbulus maidis (DeLong) using MaxEnt. Pest Manag Sci 75:2706–2715

    CAS  PubMed  Google Scholar 

  • Schoonhoven, L.M., van Loon, J.J.A. and Dicke, M. (2005) Insect Plant Biology. Oxford University Press, Oxford

  • Tamiru A, Bruce TJA, Woodcock CM, Caulfield JC, Midega CAO, Ogol CKPO, Mayon P, Birkett MA, Pickett JA, Khan ZR (2011) Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol Lett 14:1075–1083. https://doi.org/10.1111/j.1461-0248.2011.01674.x

    Article  PubMed  Google Scholar 

  • Tamiru A, Bruce TJA, Richter A, Woodcock CM, Midega CAO, Degenhardt J, Kelemu S, Pickett JA, Khan ZR (2017) A maize landrace that emits defense volatiles in response to herbivore eggs possesses a strongly inducible terpene synthase gene. Ecol Evol 7:2835–2845

    PubMed  PubMed Central  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    CAS  PubMed  Google Scholar 

  • Turlings TCJ, Bernasconi ML, Bertossa R, Bigler F, Caloz G, Dorn S (1998) The induction of volatile emissions in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies. Biol Control 11:122–129

    Google Scholar 

  • Turlings TC, Jeanbourquin PM, Held M, Degen T (2005) Evaluating the induced-odour emission of a Bt maize and its attractiveness to parasitic wasps. Transgenic Res 14:807–816

    CAS  PubMed  Google Scholar 

  • Virla EG, Luft Albarracin E, Moya Raygoza G (2009) Egg parasitoids of Dalbulus maidis (Hemiptera: Cicadellidae) in Jalisco state, Mexico. Fla Entomol 92:508–510

    Google Scholar 

  • Virla EG, Moya Raygoza G, Luft Albarracin E (2013) Egg parasitoids of the corn leafhopper, Dalbulus maidis, in the southernmost area of its distribution range. J Insect Sci 13:1–7

    Google Scholar 

  • Whitehead SR, Turcotte MM, Poveda K (2017) Domestication impacts on plant–herbivore interactions: a meta-analysis. Philos Trans R Soc B 372:20160034

    Google Scholar 

Download references

Acknowledgments

We kindly thank Miss Barbara Salina, who helped collecting behavioral data. We also wish to thank the revision of Prof Dr. Matthias Erb, one anonymous reviewer and the editor who made highly valuable comments to an early version of this work. This research was supported by ANPCyT (Préstamo BID PICT 2015-1147 and partially by PICT 2014-0607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia C. Fernandez.

Electronic supplementary material

ESM 1

(PDF 797 kb)

ESM 2

(PDF 818 kb)

ESM 3

(JPG 3523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coll-Aráoz, M.V., Hill, J.G., Luft-Albarracin, E. et al. Modern Maize Hybrids Have Lost Volatile Bottom-Up and Top-Down Control of Dalbulus maidis, a Specialist Herbivore. J Chem Ecol 46, 906–915 (2020). https://doi.org/10.1007/s10886-020-01204-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-020-01204-3

Keywords

Navigation