Skip to main content
Log in

History Matters: Oviposition Resource Acceptance in an Exploiter of a Nursery Pollination Mutualism

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In the fig–fig wasp nursery pollination system, parasitic wasps, such as gallers and parasitoids that oviposit from the exterior into the fig syconium (globular, enclosed inflorescence) are expected to use a variety of chemical cues for successful location of their hidden hosts. Behavioral assays were performed with freshly eclosed naive galler wasps. Syconia with different oviposition histories, i.e. with or without prior oviposition, were presented to wasps in no-choice assays and the time taken to the first oviposition attempt was recorded. The wasps exhibited a preference for syconia previously exposed to conspecifics for oviposition over unexposed syconia. Additionally, syconia exposed to oviposition by heterospecific wasps were also preferred for oviposition over unexposed syconia indicating that wasps recognise and respond to interspecific cues. Wasps also aggregated for oviposition on syconia previously exposed to oviposition by conspecifics. We investigated chemical cues that wasps may employ in accepting an oviposition resource by analyzing syconial volatile profiles, chemical footprints left by wasps on syconia, and syconial surface hydrocarbons. The volatile profile of a syconium is influenced by the identity of wasps developing within and may be used to identify suitable host syconia at long range whereas close range preference seems to exploit wasp footprints that alter syconium surface hydrocarbon profiles. These cues act as indicators of the oviposition history of the syconium, thereby helping wasps in their oviposition decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aukema BH, Raffa KF (2004) Does aggregation benefit bark beetles by diluting predation? Links between a group-colonisation strategy and the absence of emergent multiple predator effects. Ecol Entomol 29:129–138

    Article  Google Scholar 

  • Bernays EA (2001) Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annu Rev Entomol 46:703–727

    Article  CAS  PubMed  Google Scholar 

  • Borges RM (2015a) How to be fig wasp parasite on the fig–fig wasp mutualism. Curr Opin Insect Sci 8:34–40

    Article  Google Scholar 

  • Borges RM (2015b) How mutualisms between plant and insects are stabilized. Curr Sci 108:1862–1868

    Google Scholar 

  • Borges RM (2016) On the air: broadcasting and reception of volatile messages in brood-site pollination mutualisms. In: Blande J, Glinwood R (eds) Deciphering chemical language of plant communication. Springer International Publishing, Cham, pp 227–255

  • Borges RM, Bessière J-M, Ranganathan Y (2013) Diel variation in fig volatiles across syconium development: making sense of scents. J Chem Ecol 39:630–642

    Article  CAS  PubMed  Google Scholar 

  • Boulton RA, Collins LA, Shuker DM (2015) Beyond sex allocation: the role of mating systems in sexual selection in parasitoid wasps. Biol Rev 90:599–627

    Article  PubMed  Google Scholar 

  • Braccini CL, Vega AS, Aráoz MVC, Teal PE, Cerrillo T, Zavala JA, Fernandez PC (2015) Both volatiles and cuticular plant compounds determine oviposition of the willow sawfly Nematus oligospilus on leaves of Salix spp. (Salicaceae). J Chem Ecol 41:985–996

    Article  CAS  PubMed  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Bruce TJ, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    Article  CAS  PubMed  Google Scholar 

  • Campbell JF, Runnion C (2003) Patch exploitation by female red flour beetles, Tribolium castaneum. J Insect Sci 3:1–8

    Article  Google Scholar 

  • Carrasco D, Larsson MC, Anderson P (2015) Insect host plant selection in complex environments. Curr Opin Insect Sci 8:1–7

    Article  Google Scholar 

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Sharma KR, Fadamiro HY (2009) Fire ant venom alkaloids act as key attractants for the parasitic phorid fly, Pseudacteon tricuspis (Diptera: Phoridae). Naturwissenschaften 96:1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Cook JM, Rasplus JY (2003) Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol Evol 18:241–248

    Article  Google Scholar 

  • Davis JM, Stamps JA (2004) The effect of natal experience on habitat preferences. Trends Ecol Evol 19:411–416

    Article  PubMed  Google Scholar 

  • Desurmont GA, Weston PA (2011) Aggregative oviposition of a phytophagous beetle overcomes egg-crushing plant defences. Ecol Entomol 36:335–343

    Article  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help. Trends Plant Sci 15:167–175

    Article  CAS  PubMed  Google Scholar 

  • Fatouros NE, Lucas-Barbosa D, Weldegergis BT, Pashalidou FG, van Loon JJ, Dicke M, Harvey JA, Gols R, Huigens ME (2012) Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. PLoS One 7:e43607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galil J, Eisikowitch D (1968) Flowering cycles and fruit types of Ficus sycomorus in Israel. New Phytol 67:745–758

    Article  Google Scholar 

  • Ghara M, Kundanati L, Borges RM (2011) Nature’s Swiss Army knives: ovipositor structure mirrors ecology in a multitrophic fig wasp community. PLoS One 6:e23642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghara M, Ranganathan Y, Krishnan A, Gowda V, Borges RM (2014) Divvying up an incubator: how parasitic and mutualistic fig wasps use space within their nursery microcosm. Arthropod Plant Interact 8:191–203

    Article  Google Scholar 

  • Greeff JM, Van Vuuren GJJ, Kryger P, Moore JC (2009) Outbreeding and possibly inbreeding depression in a pollinating fig wasp with a mixed mating system. Heredity 102:349–356

    Article  CAS  PubMed  Google Scholar 

  • Grison-Pigé L, Bessière J-M, Hossaert-McKey M (2002) Specific attraction of fig-pollinating wasps: role of volatile compounds released by tropical figs. J Chem Ecol 28:283–295

    Article  PubMed  Google Scholar 

  • Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72:698–711

    Article  CAS  PubMed  Google Scholar 

  • Hemptinne J-L, Lognay G, Doumbia M, Dixon AFG (2001) Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the larvae of the two spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Chemoecology 11:43–47

    Article  CAS  Google Scholar 

  • Henter HJ (2003) Inbreeding depression and haplodiploidy: experimental measures in a parasitoid and comparisons across diploid and haplodiploid insect taxa. Evolution 57:1793–1803

    Article  PubMed  Google Scholar 

  • Herre EA, Jandér KC, Machado CA (2008) Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Annu Rev Ecol Evol Syst 39:439–458

    Article  Google Scholar 

  • Hossaert-McKey M, Gibernau M, Frey JE (1994) Chemosensory attraction of fig wasps to substances produced by receptive figs. Entomol Exp Appl 70:185–191

    Article  Google Scholar 

  • Hossaert-McKey M, Soler C, Schatz B, Proffit M (2010) Floral scents: their roles in nursery pollination mutualisms. Chemoecology 20:75–88

    Article  Google Scholar 

  • Hwang S-Y, Liu C-H, Shen T-C (2008) Effects of plant nutrient availability and host plant species on the performance of two Pieris butterflies (Lepidoptera: Pieridae). Biochem Syst Ecol 36:505–513

    Article  CAS  Google Scholar 

  • Jandér KC, Herre EA, Simms EL (2012) Precision of host sanctions in the fig tree–fig wasp mutualism: consequences for uncooperative symbionts. Ecol Lett 15:1362–1369

    Article  Google Scholar 

  • Jousselin E, van Noort S, Berry V, Rasplus J-Y, Rønsted N, Erasmus JC, Greeff JM (2008) One fig to bind them all: host conservatism in a fig wasp community unraveled by cospeciation analyses among pollinating and non pollinating fig wasps. Evolution 62:1777–1797

    Article  PubMed  Google Scholar 

  • Kramer AM, Dennis B, Liebhold AM, Drake JM (2009) The evidence for Allee effects. Popul Ecol 51:341–354

    Article  Google Scholar 

  • Krishnan A, Borges RM (2014) Parasites exert conflicting selection pressures to affect reproductive asynchrony of their host plant in an obligate pollination mutualism. J Ecol 102:1329–1340

    Article  Google Scholar 

  • Mathis KA, Tsutsui ND (2016) Cuticular hydrocarbon cues are used for host acceptance by Pseudacteon spp. phorid flies that attack Azteca sericeasur ants. J Chem Ecol 42:286–293

    Article  CAS  PubMed  Google Scholar 

  • Michaud JP, Jyoti JL (2007) Repellency of conspecific and heterospecific larval residues to Hippodamia convergens (Coleoptera: Coccinellidae) ovipositing on sorghum plants. Eur J Entomol 104:399–405

    Article  Google Scholar 

  • Miller CW, Fletcher Jr RJ, Gillespie SR (2013) Conspecific and heterospecific cues override resource quality to influence offspring production. PLoS One 8:e70268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minkenberg OP, Tatar M, Rosenheim JA (1992) Egg load as a major source of variability in insect foraging and oviposition behavior. Oikos 65:134–142

    Article  Google Scholar 

  • Mitsui H, Takahashi KH, Kimura MT (2006) Spatial distributions and clutch sizes of Drosophila species ovipositing on cherry fruits of different stages. Popul Ecol 48:233–237

    Article  Google Scholar 

  • Nufio CR, Papaj DR (2001) Host marking behavior in phytophagous insects and parasitoids. Entomol Exp Appl 99:273–293

    Article  Google Scholar 

  • Nufio CR, Papaj DR (2004) Host-marking behaviour as a quantitative signal of competition in the walnut fly Rhagoletis juglandis. Ecol Entomol 29:336–344

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara BR, Simpsons GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. Version 2.0–7. http://cran.r-project.org

  • Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314

    Article  CAS  PubMed  Google Scholar 

  • Peñaflor MFGV, Erb M, Robert CAM, Miranda LA, Werneburg AG, Dossi FCA, Turlings TC, Bento JMS (2011) Oviposition by a moth suppresses constitutive and herbivore-induced plant volatiles in maize. Planta 234:207–215

    Article  PubMed  Google Scholar 

  • Peri E, Frati F, Salerno G, Conti E, Colazza S (2013) Host chemical footprints induce host sex discrimination ability in egg parasitoids. PLoS One 8:e79054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proffit M, Schatz B, Borges RM, Hossaert-McKey M (2007) Chemical mediation and niche partitioning in non-pollinating fig-wasp communities. J Anim Ecol 76:296–303

    Article  PubMed  Google Scholar 

  • Proffit M, Schatz B, Bessière J-M, Chen C, Soler C, Hossaert-McKey M (2008) Signalling receptivity: comparison of the emission of volatile compounds by figs of Ficus hispida before, during and after the phase of receptivity to pollinators. Symbiosis 45:15–24

    CAS  Google Scholar 

  • Proffit M, Chen C, Soler C, Bessière J-M, Schatz B, Hossaert-McKey M (2009) Can chemical signals, responsible for mutualistic partner encounter, promote the specific exploitation of nursery pollination mutualisms?—The case of figs and fig wasps. Entomol Exp Appl 131:46–57

    Article  CAS  Google Scholar 

  • Prokopy RJ, Duan JJ (1998) Socially facilitated egg laying behavior in Mediterranean fruit flies. Behav Ecol Sociobiol 42:117–122

    Article  Google Scholar 

  • Prokopy RJ, Roitberg BD (2001) Joining and avoidance behaviour in non-social insects. Annu Rev Entomol 46:631–665

    Article  CAS  PubMed  Google Scholar 

  • Ranganathan Y, Borges RM (2009) Predatory and trophobiont-tending ants respond differently to fig and fig wasp volatiles. Anim Behav 77:1539–1545

    Article  Google Scholar 

  • Ranganathan Y, Ghara M, Borges RM (2010) Temporal associations in fig–wasp–ant interactions: diel and phenological patterns. Entomol Exp Appl 137:50–61

    Article  Google Scholar 

  • Rieger JF, Binckley CA, Resetarits WJ (2004) Larval performance and oviposition site preference along a predation gradient. Ecology 85:2094–2099

    Article  Google Scholar 

  • Riffell JA, Lei H, Abrell L, Hildebrand JG (2013) Neural basis of a pollinator's buffet: olfactory specialization and learning in Manduca sexta. Science 339:200–204

    Article  CAS  PubMed  Google Scholar 

  • Rohlfs M, Hoffmeister TS (2004) Spatial aggregation across ephemeral resource patches in insect communities: an adaptive response to natural enemies? Oecologia 140:654–661

    Article  PubMed  Google Scholar 

  • Root RB, Kareiva PM (1984) The search for resources by cabbage butterflies (Pieris rapae): ecological consequences and adaptive significance of Markovian movements in a patchy environment. Ecology 65:147–165

    Article  Google Scholar 

  • Rosenheim JA, Jepsen SJ, Matthews CE, Smith DS, Rosenheim MR (2008) Time limitation, egg limitation, the cost of oviposition, and lifetime reproduction by an insect in nature. Am Nat 172:486–496

    Article  PubMed  Google Scholar 

  • Rostás M, Wölfling M (2009) Caterpillar footprints as host location kairomones for Cotesia marginiventris: persistence and chemical nature. J Chem Ecol 35:20–27

    Article  PubMed  Google Scholar 

  • Rostás M, Ruf D, Zabka V, Hildebrandt U (2008) Plant surface wax affects parasitoid’s response to host footprints. Naturwissenschaften 95:997

    Article  PubMed  Google Scholar 

  • Sakai S (2002) A review of brood-site pollination mutualism: plants providing breeding sites for their pollinators. J Plant Res 115:161–168

    Article  PubMed  Google Scholar 

  • Saleh N, Scott AG, Bryning GP, Chittka L (2007) Distinguishing signals and cues: bumblebees use general footprints to generate adaptive behaviour at flowers and nest. Arthropod Plant Interact 1:119–127

    Article  Google Scholar 

  • Shiojiri K, Takabayashi J, Yano S, Takafuji A (2002) Oviposition preferences of herbivores are affected by tritrophic interaction webs. Ecol Lett 5:186–192

    Article  Google Scholar 

  • Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87:185–190

    Article  Google Scholar 

  • Suleman N, Raja S, Compton SG (2012) Only pollinator fig wasps have males that collaborate to release their females from figs of an Asian fig tree. Biol Lett 8:344–346

    Article  PubMed  Google Scholar 

  • Svensson GP, Pellmyr O, Raguso RA (2006) Strong conservation of floral scent composition in two allopatric yuccas. J Chem Ecol 32:2657–2665

    Article  CAS  PubMed  Google Scholar 

  • Wang RW, Zheng Q (2008) Structure of a fig wasp community: temporal segregation of oviposition and larval diets. Symbiosis 45:113–116

    Google Scholar 

  • Webster B, Bruce T, Pickett J, Hardie J (2010) Volatiles functioning as host cues in a blend become non host cues when presented alone to the black bean aphid. Anim Behav 79:451–457

    Article  Google Scholar 

  • Weiblen GD (2002) How to be a fig wasp. Annu Rev Entomol 47:299–330

    Article  CAS  PubMed  Google Scholar 

  • Wertheim B, Van Baalen EJA, Dicke M, Vet LE (2005) Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective. Annu Rev Entomol 50:321–346

    Article  CAS  PubMed  Google Scholar 

  • Woodbury N, Gries G (2013) Firebrats, Thermobia domestica, aggregate in response to the microbes Enterobacter cloacae and Mycotypha microspora. Entomol Exp Appl 147:154–159

    Article  Google Scholar 

  • Yadav P, Borges RM (2017a) The insect ovipositor as a volatile sensor within a closed microcosm. J Exp Biol 220:1554–1557

    Article  PubMed  Google Scholar 

  • Yadav P, Borges RM (2017b) Host–parasitoid development and survival strategies in a non-pollinating fig wasp community. Acta Oecol. https://doi.org/10.1016/j.actao.2017.04.001

Download references

Acknowledgements

This work was supported by funds from the Ministry of Environment, Forests & Climate Change, the Department of Biotechnology, and the Department of Science and Technology-FIST, Government of India. We thank the Indo-French Centre for the Promotion of Advanced Research (IFCPAR) for supporting JMB’s travel. We thank Anusha Kumble and G Yathiraj for help in field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renee M. Borges.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P., Desireddy, S., Kasinathan, S. et al. History Matters: Oviposition Resource Acceptance in an Exploiter of a Nursery Pollination Mutualism. J Chem Ecol 44, 18–28 (2018). https://doi.org/10.1007/s10886-017-0914-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0914-0

Keywords

Navigation