Skip to main content
Log in

The Fungus Raffaelea lauricola Modifies Behavior of Its Symbiont and Vector, the Redbay Ambrosia Beetle (Xyleborus Glabratus), by Altering Host Plant Volatile Production

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The redbay ambrosia beetle Xyleborus glabratus is the vector of the symbiotic fungus, Raffaelea lauricola that causes laurel wilt, a highly lethal disease to members of the Lauraceae family. Pioneer X. glabratus beetles infect live trees with R. lauricola, and only when tree health starts declining more X. glabratus are attracted to the infected tree. Until now this sequence of events was not well understood. In this study, we investigated the temporal patterns of host volatiles and phytohormone production and vector attraction in relation to laurel wilt symptomology. Following inoculations with R. lauricola, volatile collections and behavioral tests were performed at different time points. Three days after infection (DAI), we found significant repellency of X. glabratus by leaf odors of infected swamp bay Persea palustris as compared with controls. However, at 10 and 20 DAI, X. glabratus were more attracted to leaf odors from infected than non-infected host plants. GC-MS analysis revealed an increase in methyl salicylate (MeSA) 3 DAI, whereas an increase of sesquiterpenes and leaf aldehydes was observed 10 and 20 DAI in leaf volatiles. MeSA was the only behaviorally active repellent of X. glabratus in laboratory bioassays. In contrast, X. glabratus did not prefer infected wood over healthy wood, and there was no associated significant difference in their volatile profiles. Analyses of phytohormone profiles revealed an initial increase in the amount of salicylic acid (SA) in leaf tissues following fungal infection, suggesting that the SA pathway was activated by R. lauricola infection, and this activation caused increased release of MeSA. Overall, our findings provide a better understanding of X. glabratus ecology and underline chemical interactions with its symbiotic fungus. Our work also demonstrates how the laurel wilt pathosystem alters host defenses to impact vector behavior and suggests manipulation of host odor by the fungus that attract more vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acompora Zellner B, Bicchi C, Dugo P, Rubiolo P, Dugo G, Mondello L (2008) Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr J 23:297–314

    Article  Google Scholar 

  • Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. J Exp Bot 58:4019–4026

    Article  CAS  PubMed  Google Scholar 

  • Borden JH, Birmingham AL, Burleigh JS (2006) Evaluation of the push-pull tactic against the mountain pine beetle using verbenone and non-host volatiles in combination with pheromone-baited trees. For Chron 82:579–590

    Article  Google Scholar 

  • Brendemuehl RH (1990) Persea borbonia (L.) Spreng. Redbay. In: Burns RM, Honkala LH (eds) Silvics of North America. US Government Printing Office, Washington, DC, pp 503–506

    Google Scholar 

  • Bruce T, Pickett J (2011) Perception of plant volatile blends by herbivorous insects. Finding the right mix. Phytochemistry 72:1605–1611

    Article  CAS  PubMed  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  CAS  PubMed  Google Scholar 

  • Crane JH, Peña J, Osborne JL (2013) Redbay ambrosia beetle-laurel wilt pathogen: a potential major problem for the Florida avocado industry. https://edis.ifas.ufl.edu/hs379

  • Davis TS, Horton DR, Munyaneza JE, Landolt PJ (2012) Experimental infection of plants with an herbivore-associated bacterial endosymbiont influences herbivore host selection behavior. PLoS One 7:e49330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreaden TJ, Campbell AS, Gonzalez-Benecke CA, Ploetz RC, Smith JA (2017) Response of swamp bay, Persea palustris, and redbay, P. borbonia, to Raffaelea spp. isolated from Xyleborus glabratus. For Pathol 47:e12288

    Article  Google Scholar 

  • Eigenbrode SD, Birch ANE, Lindzey S, Meadow R, Snyder WE (2016) A mechanistic framework to improve understanding and applications of push-pull systems in pest management. J Appl Ecol 53:202–212

  • Eigenbrode SD, Ding H, Shiel P, Berger PH (2002) Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). P Roy Soc B-Biol Sci 269:455–460

    Article  CAS  Google Scholar 

  • Filgueiras CC, Willett DS, Junior AM, Pareja M, El Borai F, Dickson DW, Stelinski LL, Duncan LW (2016) Stimulation of the salicylic acid pathway aboveground recruits entomopathogenic nematodes belowground. PLoS One 11:e0154712

    Article  PubMed  PubMed Central  Google Scholar 

  • Ford CR, Vose JM (2007) Tsuga canadensis (L.) Carr. Mortality will impact hydrologic processes in southern appalachian forest ecosystems. Ecol Appl 17:1156–1167

    Article  PubMed  Google Scholar 

  • Fraedrich SW, Harrington TC, Rabaglia RJ (2007) Laurel wilt: a new and devastating disease of redbay caused by a fungal symbiont of the exotic redbay ambrosia beetle. Newsl Mich Entomol Soc 52:15–16

    Google Scholar 

  • Fraedrich SW, Harrington TC, Rabaglia RJ, Ulyshen MD, Mayfield AE, Hanula JL, Eickwort JM, Miller DR (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other lauraceae in the southeastern united states. Plant Dis 92:215–224

    Article  Google Scholar 

  • Gao R, Shi J, Huang R, Wang Z, Luo Y (2015) Effects of pine wilt disease invasion on soil properties and Masson pine forest communities in the three gorges reservoir region, China. Ecol Evol 5:1702–1716

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillette NE, Mehmel CJ, Mori SR, Webster JN, Wood DL, Erbilgin N, Owen DR (2012) The push-pull tactic for mitigation of mountain pine beetle (Coleoptera: Curculionidae) damage in lodgepole and whitebark pines. Environ Entomol 41:1575–1586

    Article  PubMed  Google Scholar 

  • Hanula JL, Mayfield AE, Fraedrich SW, Rabaglia RJ (2008) Biology and host associations of redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae), exotic vector of laurel wilt killing redbay trees in the southeastern united states. J Econ Entomol 101:1276–1286

    Article  PubMed  Google Scholar 

  • Hanula JL, Sullivan B (2008) Manuka oil and phoebe oil are attractive baits for Xyleborus glabratus (Coleoptera: Scolytinae ), the vector of laurel wilt. Environ Entomol 37:1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Harrington TC, Yun HY, Lu S-S, Goto H, Aghayeva DN, Fraedrich SW (2011) Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffaelea lauricola, originated in Asia. Mycologia 103:1028–1036

    Article  PubMed  Google Scholar 

  • Hijaz F, Killiny N (2014) Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet Orange) ed Y. Zhang. Plos One 9:e101830

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes MA, Inch SA, Ploetz RC, Er HL, van Bruggen AHC, Smith JA (2015a) Responses of swamp bay, Persea palustris, and avocado, Persea americana, to various concentrations of the laurel wilt pathogen, Raffaelea lauricola. For Pathol 45:111–119

    Article  Google Scholar 

  • Hughes MA, Smith JA, Ploetz RC, Kendra PE, Mayfield A, Hanula J, Hulcr J, Stelinski LL, Cameron S, Riggins JJ, Carrillo D, Rabaglia R, Eickwort J (2015b) Recovery plan for laurel wilt on redbay and other forest species caused by Raffaelea lauricola and disseminated by Xyleborus glabratus. Plant Health Prog 16:173–210

  • Hughes MA, Martini, X, Kuhns EH, Colee J, Mafra-Neto A, Stelinski LL, Smith JA (2017) Evaluation of repellents for the redbay ambrosia beetle, Xyleborus glabratus, vector of the laurel wilt pathogen. J Appl Entomol. doi:10.1111/jen.12387

  • Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. P Roy Soc B-Biol Sci 278:2866–2873

    Article  Google Scholar 

  • Hulcr J, Mann R, Stelinski LL (2011) The scent of a partner: ambrosia beetles are attracted to volatiles from their fungal symbionts. J Chem Ecol 37:1374–1377

    Article  CAS  PubMed  Google Scholar 

  • Inch SA, Ploetz RC (2012) Impact of laurel wilt, caused by Raffaelea lauricola, on xylem function in avocado, Persea americana. For Pathol 42:239–245

    Article  Google Scholar 

  • Jansen RMC, Wildt J, Kappers IF, Bouwmeester HJ, Hofstee JW, van Henten EJ (2011) Detection of diseased plants by analysis of volatile organic compound emission. Annu Rev Phytopathol 49:157–174

    Article  CAS  PubMed  Google Scholar 

  • Jenkins JC, Aber JD, Canham CD (1999) Hemlock woolly adelgid impacts on community structure and N cycling rates in eastern hemlock forests. Can J For Res 29:630–645

    Article  Google Scholar 

  • Johnson C, Cameron R, Hanula J, Bates C (2014) The attractiveness of manuka oil and ethanol, alone and in combination, to Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae) and other Curculionidae. Fla Entomol 97:861–864

    Article  Google Scholar 

  • Kendra PE, Montgomery WS, Niogret J, Epsky ND (2013) An uncertain future for american Lauraceae: a lethal threat from redbay ambrosia beetle and laurel wilt disease (a review). Am J Plant Sci 4:727–738

    Article  Google Scholar 

  • Kendra PE, Montgomery WS, Niogret J, Mark A, Guillén L, Epsky ND, Deyrup MA (2012) Xyleborus glabratus, X. affinis, and X. ferrugineus (Coleoptera: Curculionidae: Scolytinae): electroantennogram responses to host-based attractants and temporal patterns in host-seeking flight. Environ Entomol 41:1597–1605

    Article  PubMed  Google Scholar 

  • Kendra PE, Montgomery WS, Niogret J, Peña JE, Capinera JL, Brar G, Epsky ND, Heath RR (2011) Attraction of the redbay ambrosia beetle, Xyleborus glabratus, to avocado, lychee, and essential oil lures. J Chem Ecol 37:932–942

    Article  CAS  PubMed  Google Scholar 

  • Kendra PE, Montgomery WS, Niogret J, Schnell EQ, Deyrup MA, Epsky ND (2014) Evaluation of seven essential oils identifies cubeb oil as most effective attractant for detection of Xyleborus glabratus. J Pest Sci 87:681–689

    Article  Google Scholar 

  • Kendra PE, Montgomery WS, Deyrup MA, Wakarchuk D (2015a) Improved lure for redbay ambrosia beetle developed by enrichment of α-copaene content. J Pest Sci 89:427–438

  • Kendra PE, Niogret J, Montgomery WS, Deyrup MA, Epsky ND (2015b) Cubeb oil lures: terpenoid emissions, trapping efficacy, and longevity for attraction of redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). J Econ Entomol 108:350–361

    Article  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Kuhns EH, Martini X, Tribuiani Y, Coy M, Gibbard C, Peña J, Hulcr J, Stelinski LL (2014a) Eucalyptol is an attractant of the redbay ambrosia beetle, Xyleborus glabratus. J Chem Ecol 40:355–362

    Article  CAS  PubMed  Google Scholar 

  • Kuhns EH, Tribuiani Y, Martini X, Meyer WL, Peña J, Hulcr J, Stelinski LL (2014b) Volatiles from the symbiotic fungus Raffaelea lauricola are synergistic with manuka lures for increased capture of the redbay ambrosia beetle Xyleborus glabratus. Agric For Entomol 16:87–94

    Article  Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Biol 10:466–472

    Article  CAS  PubMed  Google Scholar 

  • Mann RS, Ali JG, Hermann SL, Tiwari S, Pelz-Stelinski KS, Alborn HT, Stelinski LL (2012) Induced release of a plant-defense volatile ‘deceptively’ attracts insect vectors to plants infected with a bacterial pathogen. PLoS Pathog 8:e1002610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martini X, Hughes MA, Smith JA, Stelinski LL (2015) Attraction of redbay ambrosia beetle, Xyleborus glabratus, to leaf volatiles of its host plants in North America. J Chem Ecol 41:613–621

    Article  CAS  PubMed  Google Scholar 

  • Martini X, Willett DS, Kuhns EH, Stelinski LL (2016) Disruption of vector host preference with plant volatiles may reduce spread of insect-transmitted plant pathogens. J Chem Ecol 42:357–367

    Article  CAS  PubMed  Google Scholar 

  • Mauck KE, De Moraes CM, Mescher MC (2010) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci U S A 107:3600–3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauck KE, De Moraes CM, Mescher MC (2016) Effects of pathogens on sensory-mediated interactions between plants and insect vectors. Curr Opin Plant Biol 32:53–61

    Article  PubMed  Google Scholar 

  • Mayer CJ, Vilcinskas A, Gross J (2008) Phytopathogen lures its insect vector by altering host plant odor. J Chem Ecol 34:1045–1049

    Article  CAS  PubMed  Google Scholar 

  • Mayfield AE, Brownie C (2013) The redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) uses stem silhouette diameter as a visual host-finding cue. Environ Entomol 42:743–750

    Article  PubMed  Google Scholar 

  • Mayfield AEI, Smith JA, Hughes M, Dreaden TJ (2008) First report of laurel wilt disease caused by a Raffaelea sp. on avocado in florida. Plant Dis 92:976

    Article  Google Scholar 

  • McLeod G, Gries R, von Reuss SH, Rahe JE, McIntosh R, König WA, Gries G (2005) The pathogen causing Dutch elm disease makes host trees attract insect vectors. P Roy Soc B-Biol Sci 272:2499–2503

    Article  Google Scholar 

  • Nehela Y, Hijaz F, Elzaawely AA, El-Zahaby HM, Killiny N (2016) Phytohormone profiling of the sweet orange (Citrus sinensis (l.) Osbeck) leaves and roots using GC–MS-based method. J Plant Physiol 199:12–17

    Article  CAS  PubMed  Google Scholar 

  • Niogret J, Epsky ND, Schnell RJ, Boza EJ, Kendra PE, Heath RR (2013) Terpenoid variations within and among half-sibling avocado trees, Persea americana mill. (Lauraceae). PLoS One 8:e73601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niogret J, Kendra PE, Epsky ND, Heath RR (2011) Comparative analysis of terpenoid emissions from Florida host trees of the redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Fla Entomol 94:1010–1017

    Article  CAS  Google Scholar 

  • Ploetz RC, Pérez-Martínez JM, Evans EA, Inch SA (2011) Toward fungicidal management of laurel wilt of avocado. Plant Dis 95:977–982

    Article  Google Scholar 

  • Rabaglia RJ, Dole SA, Cognato AI (2006) Review of american Xyleborina (Coleoptera: Curculionidae: Scolytinae) occurring north of mexico, with an illustrated key. Ann Entomol Soc Am 99:1034–1056

  • Spiegel KS, Leege LM (2013) Impacts of laurel wilt disease on redbay (Persea borbonia (L.) Spreng.) population structure and forest communities in the coastal plain of Georgia, USA. Biol Invasions 15:2467–2487

    Article  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 104:18842–18847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vet LEM, van Lenteren JC, Hetmans M, Meelis E (1983) An airflow olfactometer for measuring olfactory responses of hymenopterous parasitoids and other small insects. Physiol Entomol 8:97–106

    Article  Google Scholar 

  • Werner BJ, Mowry TM, Bosque-Pérez NA, Ding H, Eigenbrode SD (2009) Changes in green peach aphid responses to potato leafroll virus-induced volatiles emitted during disease progression. Environ Entomol 38:1429–1438

    Article  CAS  PubMed  Google Scholar 

  • Yorks TE, Leopoldn DJ, Raynal DJ (2003) Effects of Tsuga canadensr’s mortality on soil water chemistry and understory vegetation: possible consequences of an invasive insect herbivore. Can J For Res 33:1525–1537

    Article  CAS  Google Scholar 

  • Zar J (2009) Biostatisical analysis, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by USDA-NIFA grant 2015·51181-24257 to LLS. We thank Angelique Hoyte, Laurie Martini, and Barry Fleming for assistance in the laboratory experiments at the UF Citrus Research and Education Center, Lake Alfred. We thank Dr. Heather McAuslane, Lucile Skelley, Adam Black and Patrick James for laboratory and field assistance at UF Gainesville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Martini.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martini, X., Hughes, M.A., Killiny, N. et al. The Fungus Raffaelea lauricola Modifies Behavior of Its Symbiont and Vector, the Redbay Ambrosia Beetle (Xyleborus Glabratus), by Altering Host Plant Volatile Production. J Chem Ecol 43, 519–531 (2017). https://doi.org/10.1007/s10886-017-0843-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0843-y

Keywords

Navigation