Skip to main content
Log in

Feeding by Whiteflies Suppresses Downstream Jasmonic Acid Signaling by Eliciting Salicylic Acid Signaling

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their “success” is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arimura, G. I., Ozawa, R., Nishioka, T., Boland, W., Koch, T., Kühnemann, F., and Takabayashi, J. 2002. Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J. 29:87–98.

    Article  PubMed  CAS  Google Scholar 

  • Beckers, G. J. M. and Spoel, S. H. 2006. Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol. 8:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Bell, E., Creelman, R. A., and Mullet, J. E. 1995. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 92:8675–8679.

    Article  PubMed  CAS  Google Scholar 

  • Bruessow, F., Gouhier-Darimont, C., Buchala, A., Metraux, J. P., and Reymond, P. 2010. Insect eggs suppress plant defense against chewing herbivores. Plant J. 62:876–885.

    Article  PubMed  CAS  Google Scholar 

  • Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., and Dong, X. N. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Plant Cell 88:57–63.

    CAS  Google Scholar 

  • Cipollini, D., Enright, S., Traw, M. B., and Bergelson, J. 2004. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol. Ecol. 13:1643–1653.

    Google Scholar 

  • Clarke, J. D., Liu, Y., Klessig, D. F., and Dong, X. N. 1998. Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant. Plant Cell 10:557–569.

    PubMed  CAS  Google Scholar 

  • Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Waed, E., and Ryals, J. 1994. A central role of salicylic acid in plant disease resistance. Science 266:1247–1250.

    Article  PubMed  CAS  Google Scholar 

  • Dicke, M., van Loon, J. J. A., and Soler, R. 2009. Chemical complexity of volatiles from plants induced by multiple attack. Nat. Chem. Biol. 5:317–324.

    Article  PubMed  CAS  Google Scholar 

  • Diezel, C., von Dahl, C. C., Gaquerel, E., and Baldwin, I. T. 2009. Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol. 150:1576–1586.

    Article  PubMed  CAS  Google Scholar 

  • Doares, S. H., Narvaes-Vasquez, J., Conconi, A., and Ryan, C. A. 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108:1741–1746.

    PubMed  CAS  Google Scholar 

  • Engelberth, J., Koch, T., Schüler, G., Bachmann, N., Rechtenbach, J., and Boland, W. 2001. Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol. 125:369–377.

    Article  PubMed  CAS  Google Scholar 

  • Erb, M., Meldau, S., and Howe, G. A. 2012. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17:250–259.

    Article  PubMed  CAS  Google Scholar 

  • Funk, C. J. 2001. Alkaline phosphatase activity in whitefly salivary glands and saliva. Arch. Insect Biochem. Physiol. 46:165–174.

    Article  PubMed  CAS  Google Scholar 

  • Guzman, P. and Ecker, J. R. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523.

    PubMed  CAS  Google Scholar 

  • Jirage, D., Zhou, N., Cooper, B., Clarke, J. D., Dong, X. N., and Glazebrook, J. 2001. Constitutive salicylic acid-dependent signaling in cpr1 and cpr6 mutants requires PAD4. Plant J. 26:395–407.

    Article  PubMed  CAS  Google Scholar 

  • Kachroo, P., Shanklin, J., Shah, J., Whittle, E. J., and Klessig, D. F. 2001. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc. Natl. Acad. Sci. U.S.A. 98:9448–9453.

    Article  PubMed  CAS  Google Scholar 

  • Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. Chicago University Press, Chicago.

    Book  Google Scholar 

  • Kempema, L. A., Cui, X. P., Holzer, F. M., and Walling, L. L. 2007. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol. 143:849–865.

    Article  PubMed  CAS  Google Scholar 

  • Koornneef, A. and Pieterse, C. M. J. 2008. Cross talk in defense signaling. Plant Physiol. 146:839–844.

    Article  PubMed  CAS  Google Scholar 

  • Koornneef, A., Leon-Reyes, A., Ritsema, T., Verhage, A., den Otter, F. C., van Loon, L. C., and Pieterse, C. M. J. 2008. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol. 147:1358–1368.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel, B. N. and Brooks, D. M. 2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5:325–331.

    Article  PubMed  CAS  Google Scholar 

  • Leon-reyes, A., Du, Y., Koornneef, A., Proietti, S., Körbes, A. P., Memelink, J., Pieterse, C. M., and Ritsema, T. 2010. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol. Plant Microbe Interact. 23:187–197.

    Google Scholar 

  • Li, J., Brader, G., and Palva, E. T. 2004. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331.

    Article  PubMed  CAS  Google Scholar 

  • Liu, T. X. 2000. Population dynamics of Bemisia argentifolii (Homoptera: Aleyrodidae) on spring collard and relationship to yield in the lower Rio Grande valley of Texas. J. Econ. Entomol. 93:750–756.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. L., Ahn, J. E., Datta, S., Salzman, R. A., Moon, J., Huyghues-Despointes, B., Pittendrigh, B., Murdock, L. L., Koiwa, H., and Zhu-Salzman, K. 2005. Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. Plant Physiol. 139:1545–1556.

    Article  PubMed  CAS  Google Scholar 

  • Mohase, L. and van der Westhuizen, A. J. 2002. Salicylic acid is involved in resistance responses in the Russian wheat aphid-wheat interaction. J. Plant Physiol. 159:585–590.

    Article  CAS  Google Scholar 

  • Ndamukong, I., Al Abdallat, A., Thurow, C., Fode, B., Zander, M., Weigel, R., and Gatz, C. 2007. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J. 50:128–139.

    Article  PubMed  CAS  Google Scholar 

  • Ochsenbein, C., Przybyla, D., Danon, A., Landgraf, F., Göbel, C., Imboden, A., Feussner, I., and Apel, K. 2006. The role of EDS1 (enhanced disease susceptibility) during singlet oxygen-mediated stress responses of Arabidopsis. Plant J. 47:445–456.

    Article  PubMed  CAS  Google Scholar 

  • Sarmento, R. A., Lemos, F., Bleeker, P. M., Schuurink, R. C., Pallini, A., Oliveira, M. G. A., Lima, E. R., Kant, M., Sabelis, M. W., and Jassen, A. 2011. A herbivore that manipulate plant defense. Ecol. Lett. 14:229–236.

  • Schaller, F., Biesgen, C., Müssig, C., Altmann, T., and Weiler, E. W. 2000. 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210:979–984.

    Article  PubMed  CAS  Google Scholar 

  • Spoel, S. H., Koornneef, A., Claessens, S. M., Korzelius, J. P., van Pelt, J. A., Mueller, M. J., Buchala, A. J., Métraux, J. P., Brown, R., Kazan, K., van Loon, L. C., Dong, X. N., and Pieterse, C. M. J. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770.

    Article  PubMed  CAS  Google Scholar 

  • Thaler, J. S., Humphrey, P. T., and Whiteman, N. K. 2012. Evolution of jasmonate and salycilate signal crosstalk. Trends Plant Sci. 17:260–270.

    Article  PubMed  CAS  Google Scholar 

  • van de Ven, W. T. G., Levesque, C. S., Perring, T. M., and Walling, L. L. 2000. Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12:1409–1423.

    PubMed  Google Scholar 

  • von Malek, B., van der Graaff, E., Schneitz, K., and Keller, B. 2002. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216:187–192.

    Article  Google Scholar 

  • Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216.

    Google Scholar 

  • Walling, L. L. 2008. Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol. 146:859–866.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J. Q. and Baldwin, I. T. 2009. Herbivory-induced signalling in plants: perception and action. Plant Cell Environ. 32:1161–1174.

    Article  PubMed  CAS  Google Scholar 

  • Zarate, S. I., Kempema, L. A., and Walling, L. L. 2007. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol. 143:866–875.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P. J., Zheng, S. J., van Loon, J. J. A., Boland, W., David, A., Mumm, R., and Dicke, M. 2009. Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proc. Natl. Acad. Sci. U.S.A. 106:21202–21207.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P. J., Zhu, X. Y., Huang, F., Liu, Y., Zhang, J. M., Lu, Y. B., and Ruan, Y. M. 2011. Suppression of jasmonic acid-dependent defense in cotton plant by the mealybug Phenacoccus solenopsis. PLoS One 6:e22378.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P. J., Broekgaarden, C., Zheng, S. J., Snoeren, T. A. L., van Loon, J. J. A., Gols, R., and Dicke, M. 2013. Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana. New Phytol. 197:1291–1299.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (973 Program) (No. 2012CB114105), Zhejiang Provincial Natural Science Foundation of China under Grant No. R3100692, the Qianjiang Excellence Project of Zhejiang Province (2011R10013), Special Fund for Agro-scientific Research in the Public Interest of China (201303019), and Open Fund of State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control (No. 2010DS700124-KF1111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Jun Zhang.

Additional information

P.-J. Zhang and W.-D. Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, PJ., Li, WD., Huang, F. et al. Feeding by Whiteflies Suppresses Downstream Jasmonic Acid Signaling by Eliciting Salicylic Acid Signaling. J Chem Ecol 39, 612–619 (2013). https://doi.org/10.1007/s10886-013-0283-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0283-2

Keywords

Navigation