Skip to main content

Advertisement

Log in

The Chemical Ecology of Soil Organic Matter Molecular Constituents

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Soil organic matter (OM) contains vast stores of carbon, and directly supports microbial, plant, and animal life by retaining essential nutrients and water in the soil. Soil OM plays important roles in biological, chemical, and physical processes within the soil, and arguably plays a major role in maintaining long-term ecological stability in a changing world. Despite its importance, there is a great deal still unknown about soil OM chemical ecology. The development of sophisticated analytical methods have reshaped our understanding of soil OM composition, which is now believed to be comprised of plant and microbial products at various stages of decomposition. The methods also have recently been applied to study environmental change in various settings and have provided unique insight with respect to soil OM chemical ecology. The goal of this review is to highlight the methods used to characterize soil OM structure, source, and degradation that have enabled precise observations of OM and associated ecological shifts. Although the chemistry of soil OM is important in its overall fate in ecosystems, the studies conducted to date suggest that ecological function is not defined by soil OM chemistry alone. The long-standing questions regarding soil OM stability and recalcitrance will likely be answered when several molecular methods are used in tandem to closely examine structure, source, age, degradation stage, and interactions of specific OM components in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almendros, G., Dorado, J., Gonzalez-Vila, F. J., Blanco, M. J., and Lankes, U. 2000. C-13 NMR assessment of decomposition patterns during composting of forest and shrub biomass. Soil Biol. Biochem. 32:793–804.

    CAS  Google Scholar 

  • Amelung, W., Cheshire, M. V., and Guggenberger, G. 1996. Determination of neutral and acidic sugars from soil by capillary gas liquid chromatography after trifluoroacetic acid hydrolysis. Soil Biol. Biochem. 28:1631–1639.

    CAS  Google Scholar 

  • Amelung, W., Brodowski, S., Sandhage-Hofmann, A., and Bol, R. 2009. Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv. Agron. 100:155–250.

    Google Scholar 

  • Baker, E. A. 1982. Chemistry and morphology of plant epicuticular waxes, pp. 139–165, in D. F. Cutler, K. L. Alvin, and C. E. Price (eds.), The Plant Cuticle. Academic, London, UK.

    Google Scholar 

  • Baldock, J. A. and Preston, C. M. 1995. Chemistry of carbon decomposition processes in forests as revealed by solid-state carbon-13 nuclear magnetic resonance, pp. 89–117, in W. W. McFee and J. M. Kelly (eds.), Carbon Forms and Functions in Forest Soils. Soil Science Society of America, Madison, Wisconsin, USA.

    Google Scholar 

  • Baldock, J. A. and Skjemstad, J. O. 2000. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31:697–710.

    CAS  Google Scholar 

  • Batjes, N. H. 1996. Total carbon and nitrogen in the soils of the world. Europ. J. Soil Sci. 47:151–163.

    CAS  Google Scholar 

  • Baumann, K., Marschner, P., Smernik, R. J., and Baldock, J. A. 2009. Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biol. Biochem. 41:1966–1975.

    CAS  Google Scholar 

  • Beer, C. 2008. Soil science: The Arctic carbon count. Nature Geosci. 1:569–570.

    CAS  Google Scholar 

  • Beyer, L., Sorge, C., Blume, H.-P., and Schulten, H.-R. 1995. Soil organic matter composition and transformation in gelichistosols of coastal continental Antarctica. Soil Biol. Biochem. 27:1279–1288.

    CAS  Google Scholar 

  • Beyer, L., Knicker, H., Blume, H. P., Bolter, M., Vogt, B., and Schneider, D. 1997. Soil organic matter of suggested spodic horizons in relic ornithogenic soils of coastal continental Antarctica (Casey Station, Wilkes Land) in comparison with that of spodic soil horizons in Germany. Soil Sci. 162:518–527.

    CAS  Google Scholar 

  • Beyer, L., White, D. M., and Bölter, M. 2001. Soil organic matter composition, transformation, and microbial colonization of gelicpodzols in the coastal region of east Antarctica. Aust. J. Soil Res. 39:543–563.

    CAS  Google Scholar 

  • Bianchi, G. 1995. Plant waxes, pp. 175–222, in R. J. Hamilton (ed.), Waxes: chemistry, molecular biology and functions. The Oily Press, Dundee, Scotland.

    Google Scholar 

  • Biasi, C., Rusalimova, O., Meyer, H., Kaiser, C., Wanek, W., Barsukov, P., Junger, H., and Richter, A. 2005. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Commun. Mass Spectrom. 19:1401–1408.

    PubMed  CAS  Google Scholar 

  • Billings, S. A., Lichter, J., Ziegler, S. E., Hungate, B. A., and Richter, D. D. B. 2010. A call to investigate drivers of soil organic matter retention vs. mineralization in a high CO2 world. Soil Biol. Biochem. 42:665–668.

    CAS  Google Scholar 

  • Blagodatskaya, E., Yuyukina, T., Blagodatsky, S., and Kuzyakov, Y. 2011. Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: Consideration of 13C fractionation and preferential substrate utilization. Soil Biol. Biochem. 43:159–166.

    CAS  Google Scholar 

  • Bull, I. D., Van Bergen, P. F., Nott, C. J., Poulton, P. R., and Evershed, R. P. 2000. Organic geochemical studies of soils from the rothamsted classical experiments-V. The fate of lipids in different long-term experiments. Org. Geochem. 31:389–408.

    CAS  Google Scholar 

  • Carbone, M. S., Czimczik, C. I., Mcduffee, K. E., and Trumbore, S. E. 2007. Allocation and residence time of photosynthetic products in a boreal forest using a low-level (14)C pulse-chase labeling technique. Glob. Change Biol. 13:466–477.

    Google Scholar 

  • Chefetz, B. and Xing, B. 2009. Relative role of aliphatic and aromatic moieties as sorption domains for organic compounds: A review. Environ. Sci. Technol. 43:1680–1688.

    PubMed  CAS  Google Scholar 

  • Christensen, B. T., Olesen, J. E., Hansen, E. M., and Thomsen, I. K. 2011. Annual variation in δ13C values of maize and wheat: Effect on estimates of decadal scale soil carbon turnover. Soil Biol. Biochem. 43:1961–1967.

    CAS  Google Scholar 

  • Clemente, J. S., Simpson, A. J., and Simpson, M. J. 2011. Association of specific organic matter compounds in size fractions of soils under different environmental controls. Org. Geochem. 42:1169–1180.

    CAS  Google Scholar 

  • Clemente, J. S., Gregorich, E. G., Simpson, A. J., Kumar, R., Courtier-Murias, D., and Simpson, M. J. 2012. Comparison of NMR methods for the analysis of organic matter composition from soil density and particle fractions. Environ. Chem. 9:97–107.

    CAS  Google Scholar 

  • Crow, S. E., Lajtha, K., Filley, T. R., Swanston, C. W., Bowden, R. D., and Caldwell, B. A. 2009. Sources of plant-derived carbon and stability of organic matter in soil: Implications for global change. Glob. Change Biol. 15:2003–2019.

    Google Scholar 

  • Czimczik C. I., and Trumbore S. E. 2007. Short-term controls on the age of microbial carbon sources in boreal forest soils. J. Geophys. Res-Biogeo. 112, G03001, p 8. doi:10.1029/2006JG000389.

  • Czimczik, C. I., Treseder, K. K., Carbone, M. S., and Trumbore, S. E. 2005. Radiocarbon - a low-impact tool to study nutrient transport by soil fungi under field conditions. New Phytol. 166:595–600.

    PubMed  Google Scholar 

  • Dai, X. Y., Ping, C. L., Candler, R., Haumaier, L., and Zech, W. 2001. Characterization of soil organic matter fractions of tundra soils in arctic Alaska by carbon-13 nuclear magnetic resonance spectroscopy. Soil Sci. Soc. Am. J. 65:87–93.

    CAS  Google Scholar 

  • Dai, X. Y., Ping, C. L., and Michaelson, G. J. 2002. Characterizing soil organic matter in arctic tundra soils by different analytical approaches. Org. Geochem. 33:407–419.

    CAS  Google Scholar 

  • Davidson, E. A. and Janssens, I. A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173.

    PubMed  CAS  Google Scholar 

  • Deshmukh, A. P., Simpson, A. J., Hadad, C. M., and Hatcher, P. G. 2005. Insights into the structure of cutin and cutan from Agave americana leaf cuticle using HRMAS NMR spectroscopy. Org. Geochem. 36:1072–1085.

    CAS  Google Scholar 

  • Dijkstra, F. A. 2009. Modeling the flow of 15N after a 15N pulse to study long-term N dynamics in a semiarid grassland. Ecology 90:2171–2182.

    PubMed  Google Scholar 

  • Dijkstra, F. A., Pendall, E., Mosier, A. R., King, J. Y., Milchunas, D. G., and Morgan, J. A. 2008. Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland. Funct. Ecol. 22:975–982.

    Google Scholar 

  • Dijkstra, F. A., Blumenthal, D., Morgan, J. A., Lecain, D. R., and Follett, R. F. 2010. Elevated CO2 effects on semi-arid grassland plants in relation to water availability and competition. Funct. Ecol. 24:1152–1161.

    Google Scholar 

  • Dijkstra, P., Dalder, J. J., Selmants, P. C., Hart, S. C., Koch, G. W., Schwartz, E., and Hungate, B. A. 2011. Modeling soil metabolic processes using isotopologue pairs of position-specific 13C-labeled glucose and pyruvate. Soil Biol. Biochem. 43:1848–1857.

    CAS  Google Scholar 

  • Dümig, A., Knicker, H., Schad, P., Rumpel, C., Dignac, M. F., and Kögel-Knabner, I. 2009. Changes in soil organic matter composition are associated with forest encroachment into grassland with long-term fire history. Europ. J. Soil Sci. 60:578–589.

    Google Scholar 

  • Eglinton, T. I., Aluwihare, L. I., Bauer, J. E., Druffel, E. R. M., and Mcnichol, A. P. 1996. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Anal. Chem. 68:904–912.

    PubMed  CAS  Google Scholar 

  • Fang, C., Smith, P., Moncrieff, J. B., and Smith, J. U. 2005. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59.

    PubMed  CAS  Google Scholar 

  • Feng, X. and Simpson, M. J. 2007. The distribution and degradation of biomarkers in Alberta grassland soil profiles. Org. Geochem. 38:1558–1570.

    CAS  Google Scholar 

  • Feng X., and Simpson M. J. 2008. Temperature responses of individual soil organic matter components. J. Geophys. Res. Biogeosci. 113, G03036. doi:10.1029/2008JG000743.

  • Feng, X. and Simpson, M. J. 2009. Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality. Soil Biol. Biochem. 41:804–812.

    CAS  Google Scholar 

  • Feng, X. and Simpson, M. J. 2011. Molecular-level methods for monitoring soil organic matter responses to global climate change. J. Environ. Monitor. 13:1246–1254.

    CAS  Google Scholar 

  • Feng, X., Simpson, A. J., and Simpson, M. J. 2005. Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces. Org. Geochem. 36:1553–1566.

    CAS  Google Scholar 

  • Feng, X., Simpson, A. J., Wilson, K. P., Dudley Williams, D., and Simpson, M. J. 2008. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geosci. 1:836–839.

    CAS  Google Scholar 

  • Feng, X., Simpson, A. J., Schlesinger, W. H., and Simpson, M. J. 2010. Altered microbial community structure and organic matter composition under elevated CO2 and N fertilization in the duke forest. Glob. Change Biol. 16:2104–2116.

    Google Scholar 

  • Feng, X., Hills, K. M., Simpson, A. J., Whalen, J. K., and Simpson, M. J. 2011a. The role of biodegradation and photo-oxidation in the transformation of terrigenous organic matter. Org. Geochem. 42:262–274.

    CAS  Google Scholar 

  • Feng, X., Simpson, A. J., Gregorich, E. G., Elberling, B., Hopkins, D. W., Sparrow, A. D., Novis, P. M., Greenfield, L. G., and Simpson, M. J. 2011b. Chemical characterization of microbial-dominated soil organic matter in the Garwood Valley. Antarctica. Geochim. Cosmochim. Acta 74:6485–6498.

    Google Scholar 

  • Feng, X., Xu, Y., Jaffè, R., Schlesinger, W. H., and Simpson, M. J. 2011c. Turnover rates of hydrolysable aliphatic lipids in Duke Forest soils determined by compound specific 13C isotopic analysis. Org. Geochem. 41:573–579.

    Google Scholar 

  • Fox, P. A., Carter, J., and Farrimond, P. 1998. Analysis of bacteriohopanepolyols in sediment and bacterial extracts by high performance liquid chromatography atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Sp. 12:609–612.

    CAS  Google Scholar 

  • Frey, S. D., Drijber, R., Smith, H., and Melillo, J. 2008. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol. Biochem. 40:2904–2907.

    CAS  Google Scholar 

  • Froberg, M., Berggren, D., Bergkvist, B., Bryant, C., and Knicker, H. 2003. Contributions of Oi, Oe and Oa horizons to dissolved organic matter in forest floor leachates. Geoderma 113:311–322.

    CAS  Google Scholar 

  • Frostegård, A. and Bååth, E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fert. Soils 22:59–65.

    Google Scholar 

  • Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W. 1998. Black carbon in soils: The use of benzenecarboxylic acids as specific markers. Org. Geochem. 29:811–819.

    CAS  Google Scholar 

  • Glaser, B., Turrion, M.-B., and Alef, K. 2004. Amino surgars and muramic acid - biomarkers for soil microbial community structure analysis. Soil Biol. Biochem. 26:399–407.

    Google Scholar 

  • Glaser, B., Benesch, M., Dippold, M., and Zech, W. 2012. In situ 15N and 13C labelling of indigenous and plantation tree species in a tropical mountain forest (Munessa, Ethiopia) for subsequent litter and soil organic matter turnover studies. Org. Geochem. 42:1461–1469.

    Google Scholar 

  • Gonçalves, C. N., Dalmolin, R. S. D., Dick, D. P., Knicker, H., Klamt, E., and Kogel-Knabner, I. 2003. The effect of 10 % HF treatment on the resolution of CPMAS C-13 NMR spectra and on the quality of organic matter in Ferralsols. Geoderma 116:373–392.

    Google Scholar 

  • Goñi, M. A., Nelson, B., Blanchette, R. A., and Hedges, J. I. 1993. Fungal degradation of wood lignins: Geochemical perspectives from CuO-derived phenolic dimers and monomers. Geochim. Cosmochim. Acta 57:3985–4002.

    Google Scholar 

  • Harwood, J. L. and Russell, N. J. 1984. Lipids in Plants and Microbes. George Allen and Unwin, London, UK, London.

    Google Scholar 

  • Hatcher, P. G., Dria, K. J., Kim, S., and Frazier, S. W. 2001. Modern analytical studies of humic substances. Soil Sci. 166:770–794.

    CAS  Google Scholar 

  • Hatton, P. J., Kleber, M., Zeller, B., Moni, C., Plante, A. F., Townsend, K., Gelhaye, L., Lajtha, K., and Derrien, D. 2012. Transfer of litter-derived N to soil mineral-organic associations: Evidence from decadal 15 N tracer experiments. Org. Geochem. 42:1489–1501.

    Google Scholar 

  • Haumaier, L. 2010. Benzene polycarboxylic acids—A ubiquitous class of compounds in soils. J. Plant Nutr. Soil Sci. 173:727–736.

    Google Scholar 

  • Hedges, J. I. and Mann, D. C. 1979. The characterization of plant tissues by their lignin oxidation products. Geochim. Cosmochim. Acta 43:1803–1807.

    CAS  Google Scholar 

  • Hedges, J. I., Blanchette, R. A., Weliky, K., and Devol, A. H. 1988. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study. Geochim. Cosmochim. Acta 52:2717–2726.

    CAS  Google Scholar 

  • Hedges, J. I., Eglinton, G., Hatcher, P. G., Kirchman, D. L., Arnosti, C., Derenne, S., Evershed, R. P., Kögel-Knabner, I., De Leeuw, J. W., Littke, R., et al. 2000. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 31:945–958.

    CAS  Google Scholar 

  • Holloway, P. J. 1982. The chemical composition of plant cutins, pp. 45–85, in D. F. Cutler, K. L. Alvin, and C. E. Price (eds.), The Plant Cuticle. Academic, London, UK.

    Google Scholar 

  • Holloway, P. J. and Deas, A. H. B. 1973. Epoxyoctadecanoic acids in plant cutins and suberins. Phytochemistry 12:1721–1735.

    CAS  Google Scholar 

  • Hopmans, E. C., Weijers JWH, Schefuβ, E., Herfort, L., Sinninghe Damsté, J. S., and Schouten, S. 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sc. Lett. 224:107–116.

    CAS  Google Scholar 

  • Hou, J., Huang, Y., Brodsky, C., Alexandre, M. R., Mcnichol, A. P., King, J. W., Hu, F. S., and SHEN, J. 2010. Radiocarbon dating of individual lignin phenols: A new approach for establishing chronology of late quaternary lake sediments. Anal. Chem. 82:7119–7126.

    PubMed  CAS  Google Scholar 

  • Howard, D. M. and Howard, P. J. A. 1993. Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biol. Biochem. 25:1537–1546.

    Google Scholar 

  • Hu, W.-G., Mao, J., Xing, B., and Schmidt-Rohr, K. 2000. Poly(methylene) crystallites in humic substances detected by nuclear magnetic resonance. Environ. Sci. Technol. 34:530–534.

    CAS  Google Scholar 

  • Huygens, D., Boeckx, P., Templer, P., Paulino, L., van Cleemput, O., Oyarzún, C., Müller, C., and Godoy, R. 2008. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nature Geosci. 1:543–548.

    CAS  Google Scholar 

  • Ingalls, A. E., Ellis, E. E., Santos, G. M., Mcduffee, K. E., Truxal, L., Keil, R. G., and Druffel, E. R. M. 2010. HPLC purification of higher plant-dervied lignin phenols for compound specific radiocarbon analysis. Anal. Chem. 82:8931–8938.

    CAS  Google Scholar 

  • Innes, H. E., Bishop, A. N., Head, I. M., and Farrimond, P. 1997. Preservation and diagenesis of hopanoids in Recent lacustrine sediments of Priest Pot. England. Org. Geochem. 26:565–575.

    CAS  Google Scholar 

  • Kelleher, B. P. and Simpson, A. J. 2006. Humic substances in soils: Are they really chemically distinct? Environ. Sci. Technol. 40:4605–4611.

    PubMed  CAS  Google Scholar 

  • Kelleher, B. P., Simpson, M. J., and Simpson, A. J. 2006. Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy. Geochim. Cosmochim. Acta 70:4080–4094.

    CAS  Google Scholar 

  • Kingery, W. L., Simpson, A. J., Hayes, M. H. B., Locke, M. A., and Hicks, R. P. 2000. The application of multidimensional NMR to the study of soil humic substances. Soil Sci. 165:483–494.

    CAS  Google Scholar 

  • Kirschbaum, M. U. 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27:753–760.

    CAS  Google Scholar 

  • Kleber, M. 2010. What is recalcitrant soil organic matter? Environ. Chem. 7:320–332.

    CAS  Google Scholar 

  • Kleber, M., Nico, P. S., Plante, A., Filley, T., Kramer, M., Swanston, C., and Sollins, P. 2011. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity. Glob. Change Biol. 17:1097–1107.

    Google Scholar 

  • Knorr, W., Prentice, I. C., House, J. I., and Holland, E. A. 2005. Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301.

    PubMed  CAS  Google Scholar 

  • Kögel-Knabner, I. 2000. Analytical approaches for characterizing soil organic matter. Org. Geochem. 31:609–625.

    Google Scholar 

  • Kögel-Knabner, I. 2002. The macromolecular organic composition of Plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 34:139–162.

    Google Scholar 

  • Kolattukudy, P. E. and Espelie, K. E. 1989. Chemistry, biochemistry, and function of suberin and associated waxes, pp. 304–367, in J. W. Rowe (ed.), Natural Products of Woody Plants. Springer, Berlin, Germany.

    Google Scholar 

  • Kramer, C. and Gleixner, G. 2008. Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation. Soil Biol. Biochem. 40:425–433.

    CAS  Google Scholar 

  • Kramer, C., Trumbore, S., Fröberg, M., Cisneros Dozal, L. M., Zhang, D., Xu, X., Santos, G. M., and Hanson, P. J. 2010. Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil. Soil Biol. Biochem. 42:1028–1037.

    CAS  Google Scholar 

  • Kuzyakov, Y. and Bol, R. 2005. Three sources of CO2 efflux from soil partitioned by 13C natural abundance in an incubation study. Rapid Commun. Mass Sp. 19:1417–1423.

    CAS  Google Scholar 

  • Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627.

    PubMed  CAS  Google Scholar 

  • Leifeld, J. and Fuhrer, J. 2005. The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry 75:433–453.

    CAS  Google Scholar 

  • Leinweber, P., Jandl, G., Baum, C., Eckhardt, K. U., and Kandeler, E. 2008. Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biol. Biochem. 40:1496–1505.

    CAS  Google Scholar 

  • Lichter, J., Billings, S. A., Ziegler, S. E., Gaindh, D., Ryals, R., Finzi, A. C., Jackson, R. B., Stemmler, E. A., and Schlesinger, W. H. 2008. Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment. Glob. Change Biol. 14:2910–2922.

    Google Scholar 

  • Malcolm, R. L. 1989. Applications of solid-state 13C NMR spectroscopy to geochemical studies of humic substances, pp. 340–372, in M. H. B. Hayes, P. MacCarthy, R. L. Malcolm, and R. S. Swift (eds.), Humic Substances II. In Search of Structure. Wiley, New York, USA.

    Google Scholar 

  • Mao, J. D., Hu, W. G., Schmidt-Rohr, K., Davies, G., Ghabbour, E. A., and Xing, B. 2000. Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance. Soil Sci. Soc. Am. J. 64:873–884.

    CAS  Google Scholar 

  • Marschner, B., Brodowski, S., Dreves, A., Gleixner, G., Gude, A., Grootes, P. M., Hamer, U., Heim, A., Jandl, G., Ji, R., et al. 2008. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 171:91–110.

    CAS  Google Scholar 

  • Matsumoto, K., Kawamura, K., Uchida, M., and Shibata, Y. 2007. Radiocarbon content and stable carbon isotopic ratios of individual fatty acids in subsurface soil: Implication for selective microbial degradation and modification of soil organic matter. Geochem. J. 41:483–492.

    CAS  Google Scholar 

  • Mead, R. N. and Goñi, M. A. 2008. Matrix protected organic matter in a river dominated margin: A possible mechanism to sequester terrestrial organic matter? Geochim. Cosmochim. Acta 72:2673–2686.

    CAS  Google Scholar 

  • Mendez-Millan, M., Dignac, M. F., Rumpel, C., and Derenne, S. 2010. Quantitative and qualitative analysis of cutin in maize and a maize-cropped soil: Comparison of CuO oxidation, transmethylation and saponification methods. Org. Geochem. 41:187–191.

    CAS  Google Scholar 

  • Mendez-Millan, M., Dignac, M. F., Rumpel, C., and Derenne, S. 2011. Can cutin and suberin biomarkers be used to trace shoot and root-derived organic matter? A molecular and isotopic approach. Biogeochemistry 106:23–38.

    CAS  Google Scholar 

  • Mendez-Millan, M., Dignac, M. F., Rumpel, C., Rasse, D. P., Bardoux, G., and Derenne, S. 2012. Contribution of maize root derived C to soil organic carbon throughout an agricultural soil profile assessed by compound specific 13C analysis. Org. Geochem. 42:1502–1511.

    Google Scholar 

  • Morgan, J. A., Lecain, D. R., Pendall, E., Blumenthal, D. M., Kimball, B. A., Carrillo, Y., Williams, D. G., Heisler-White, J., Dijkstra, F. A., and West, M. 2011. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–205.

    PubMed  CAS  Google Scholar 

  • O’Brien S. L., Jastrow J. D., Mcfarlane K. J., Guilderson T. P., and Gonzalez-Meler M. A. 2012. Decadal cycling within long-lived carbon pools revealed by dual isotopic analysis of mineral-associated soil organic matter. Biogeochemistry (in press).

  • Otto, A. and Simpson, M. J. 2005. Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from Western Canada. Biogeochemistry 74:377–409.

    CAS  Google Scholar 

  • Otto, A. and Simpson, M. J. 2006a. Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil. Biogeochemistry 80:121–142.

    CAS  Google Scholar 

  • Otto, A. and Simpson, M. J. 2006b. Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada. Org. Geochem. 37:385–407.

    CAS  Google Scholar 

  • Otto, A. and Simpson, M. J. 2007. Analysis of soil organic matter biomarkers by sequential chemical degradation and gas chromatography - mass spectrometry. J. Sep. Sci. 30:272–282.

    PubMed  CAS  Google Scholar 

  • Otto, A., Shunthirasingham, C., and Simpson, M. J. 2005. A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada. Org. Geochem. 36:425–448.

    CAS  Google Scholar 

  • Otto, A., Gondokusumo, R., and Simpson, M. J. 2006. Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta. Canada. Appl. Geochem. 21:166–183.

    CAS  Google Scholar 

  • Pautler, B. G., Simpson, A. J., Mcnally, D. J., Lamoureux, S. F., and Simpson, M. J. 2010. Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environ. Sci. Technol. 44:4076–4082.

    PubMed  CAS  Google Scholar 

  • Pedersen, J. A., Simpson, M. A., Bockheim, J. G., and Kumar, K. 2011. Characterization of soil organic carbon in drained thaw-lake basins of Arctic Alaska using NMR and FTIR photoacoustic spectroscopy. Org. Geochem. 42:947–954.

    CAS  Google Scholar 

  • Peterse, F., Nicol, G. W., Schouten, S., and Damste, J. S. S. 2010. Influence of soil pH on the abundance and distribution of core and intact polar lipid-derived branched GDGTs in soil. Org. Geochem. 41:1171–1175.

    CAS  Google Scholar 

  • Pines A., Waugh J. S., and Gibby M. G. 1972. Proton-enhanced nuclear induction spectroscopy C-13 chemical shielding anisotropy in some organic solids. Chem. Phys. Lett. 56:1776–1777.

    Google Scholar 

  • Preston, C., Trofymow, J., Sayer, B., and Niu, J. 1997. 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can. J. Bot. 75:1601–1613.

    CAS  Google Scholar 

  • Providoli, I., Bugmann, H., Siegwolf, R., Buchmann, N., and Schleppi, P. 2006. Pathways and dynamics of 15NO -3 and 15NH +4 applied in a mountain Picea abies forest and in a nearby meadow in central Switzerland. Soil Biol. Biochem. 38:1645–1657.

    CAS  Google Scholar 

  • Rethemeyer, J., Kramer, C., Gleixner, G., Wiesenberg, G. L. B., Schwark, L., Andersen, N., Nadeau, M. J., And Grootes, P. M., Andersen, N., Nadeau, M. J., and Grootes, P. M. 2004. Complexity of soil organic matter: AMS 14C analysis of soil lipid fractions and individual compounds. Radiocarbon 46:465–473.

    CAS  Google Scholar 

  • Rethemeyer, J., Kramer, C., Gleixner, G., John, B., Yamashita, T., Flessa, H., andersen, N., Nadeau, M. J., and Grootes, P. M. 2005. Transformation of organic matter in agricultural soils: Radiocarbon concentration versus soil depth. Geoderma 128:94–105.

    CAS  Google Scholar 

  • Rumpel, C., Knicker, H., Kogel-Knabner, I., Skjemstad, J. O., and Huttl, R. F. 1998. Types and chemical composition of organic matter in reforested lignite-rich mine soils. Geoderma 86:123–142.

    CAS  Google Scholar 

  • Rumpel, C., Rabia, N., Derenne, S., Quenea, K., Eusterhues, K., Kãgel-Knabner, I., and Mariotti, A. 2006. Alteration of soil organic matter following treatment with hydrofluoric acid (HF). Org. Geochem. 37:1437–1451.

    CAS  Google Scholar 

  • Salloum, M. J., Chefetz, B., and Hatcher, P. G. 2002. Phenanthrene sorption by aliphatic-rich natural organic matter. Environ. Sci. Technol. 36:1953–1958.

    PubMed  CAS  Google Scholar 

  • Schlesinger, W. H. 1991. Biogeochemistry: An Analysis of Global Change. Academic, San Diego, California, USA.

    Google Scholar 

  • Schmidt, M. W. I., Knicker, H., Hatcher, P. G., and Kögel-Knabner, I. 1997. Improvement of C-13 and N-15 CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10 % hydrofluoric acid. Europ. J. Soil Sci. 48:319–328.

    Google Scholar 

  • Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.

    PubMed  CAS  Google Scholar 

  • Shunthirasingham, C. and Simpson, M. J. 2006. Investigation of bacterial hopanoid inputs to soils from Western Canada. Appl. Geochem. 21:964–976.

    CAS  Google Scholar 

  • Simoneit, B. R. T. 2002. Biomass burning - A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 17:129–162.

    CAS  Google Scholar 

  • Simoneit, B. R. T. 2005. A review of current applications of mass spectrometry for biomarker/molecular tracer elucidations. Mass Sp. Rev. 24:719–765.

    CAS  Google Scholar 

  • Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., and Cass, G. R. 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atm. Environ. 33:173–182.

    CAS  Google Scholar 

  • Simpson, A. 2001. Multidimensional solution state NMR of humic substances: A practical guide and review. Soil Sci. 166:795–809.

    CAS  Google Scholar 

  • Simpson, A. J. 2002. Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy. Magn. Reson. Chem. 40:S72–S82.

    CAS  Google Scholar 

  • Simpson, M. J. and Hatcher, P. G. 2004. Determination of black carbon in natural organic matter by chemical oxidation and solid-state 13C nuclear magnetic resonance spectroscopy. Org. Geochem. 35:923–935.

    CAS  Google Scholar 

  • Simpson, M. J. and Johnson, P. C. E. 2006. Identification of mobile aliphatic sorptive domains in soil humin by solid-state 13 C nuclear magnetic resonance. Environ. Toxicol. Chem. 25:52–57.

    PubMed  CAS  Google Scholar 

  • Simpson, M. J. and Mckelvie, J. R. 2009. Environmental metabolomics: New insights into earthworm ecotoxicity and contaminant bioavailability in soil. Anal. Bioanal. Chem 394:137–149.

    PubMed  CAS  Google Scholar 

  • Simpson, A. J. and Simpson, M. J. 2009. NMR of Natural Organic Matter, pp. 589–650, in B. Xing, N. Senesi, and P.-M. Huang (eds.), Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. Wiley, New York, USA.

    Google Scholar 

  • Simpson, A. J., Burdon, J., Graham, C. L., Hayes, M. H. B., Spencer, N., and Kingery, W. L. 2001a. Interpretation of heteronuclear and multidimensional NMR spectroscopy of humic substances. Europ. J. Soil Sci. 52:495–509.

    CAS  Google Scholar 

  • Simpson, A. J., Kingery, W. L., Spraul, M., Humpfer, E., Dvortsak, P., and Kerssebaum, R. 2001b. Separation of structural components in soil organic matter by diffusion ordered spectroscopy. Environ. Sci. Technol. 35:4421–4425.

    PubMed  CAS  Google Scholar 

  • Simpson, A. J., Kingery, W. L., Hayes, M. H., Spraul, M., Humpfer, E., Dvortsak, P., Kerssebaum, R., Godejohann, M., and Hofmann, M. 2002a. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften 89:84–88.

    PubMed  CAS  Google Scholar 

  • Simpson, A. J., Salloum, M. J., Kingery, W. L., and Hatcher, P. G. 2002b. Improvements in the two-dimensional nuclear magnetic resonance spectroscopy of humic substances. J. Environ. Qual. 31:388–392.

    PubMed  CAS  Google Scholar 

  • Simpson, A. J., Kingery, W. L., and Hatcher, P. G. 2003. The identification of plant derived structures in humic materials using three-dimensional NMR spectroscopy. Environ. Sci. Technol. 37:337–342.

    PubMed  CAS  Google Scholar 

  • Simpson, A. J., Lefebvre, B., Moser, A., Williams, A., Larin, N., Kvasha, M., Kingery, W. L., and Kelleher, B. 2004. Identifying residues in natural organic matter through spectral prediction and pattern matching of 2D NMR datasets. Magn. Reson. Chem. 42:14–22.

    PubMed  CAS  Google Scholar 

  • Simpson, A. J., Simpson, M. J., Kingery, W. L., Lefebvre, B. A., Moser, A., Williams, A. J., Kvasha, M., and Kelleher, B. P. 2006. The application of1H high-resolution magic-angle spinning NMR for the study of clay-organic associations in natural and synthetic complexes. Langmuir 22:4498–4503.

    PubMed  CAS  Google Scholar 

  • Simpson, A. J., Simpson, M. J., Smith, E., and And Kelleher, B. P. 2007a. Microbially derived inputs to soil organic matter: Are current estimates too low? Environ. Sci. Technol. 41:8070–8076.

    PubMed  CAS  Google Scholar 

  • Simpson, A. J., Song, G., Smith, E., Lam, B., Novotny, E. H., and Hayes, M. H. B. 2007b. Unraveling the structural components of soil humin by use of solution-state nuclear magnetic resonance spectroscopy. Environ. Sci. Technol. 41:876–883.

    PubMed  CAS  Google Scholar 

  • Simpson, M. J., Otto, A., and Feng, X. 2008. Comparison of solid-state carbon-13 nuclear magnetic resonance and organic matter biomarkers for assessing soil organic matter degradation. Soil Sci. Soc. Am. J. 72:268–276.

    CAS  Google Scholar 

  • Simpson, A. J., Mcnally, D. J., and Simpson, M. J. 2011. NMR spectroscopy in environmental research: From molecular interactions to global processes. Prog. Nucl. Mag. Res. Sp. 58:97–175.

    CAS  Google Scholar 

  • Sjögersten, S., Turner, B. L., Mahieu, N., Condron, L. M., and Wookey, P. A. 2003. Soil organic matter biochemistry and potential susceptibility to climatic change across the forest-tundra ecotone in the Fennoscandian mountains. Glob. Change Biol. 9:759–772.

    Google Scholar 

  • Sollins, P., Kramer, M. G., Swanston, C., Lajtha, K., Filley, T., Aufdenkampe, A. K., Wagai, R., and Bowden, R. D. 2009. Sequential density fractionation across soils of contrasting mineralogy: Evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry 96:209–231.

    CAS  Google Scholar 

  • Song, G., Novotny, E. H., Simpson, A. J., Clapp, C. E., and Hayes, M. H. B. 2008. Sequential exhaustive extraction of a Mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. Europ. J. Soil Sci. 59:505–516.

    CAS  Google Scholar 

  • Sutton, R. and Sposito, G. 2005. Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 39:9009–9015.

    PubMed  CAS  Google Scholar 

  • Szumigalski, A. R. and Bayley, S. E. 1996. Decomposition along a bog to rich fen gradient is central Alberta. Canada. Can. J. Bot. 74:573–581.

    Google Scholar 

  • Talbot, H. M., Watson, D. F., Murrell, J. C., Carter, J. F., and Farrimond, P. 2001. Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 921:175–185.

    PubMed  CAS  Google Scholar 

  • Talbot, H. M., Watson, D. F., Pearson, E. J., and Farrimond, P. 2003. Diverse biohopanoid compositions of non-marine sediments. Org. Geochem. 34:1353–1371.

    CAS  Google Scholar 

  • Talbot, H. M., Rohmer, M., and Farrimond, P. 2007a. Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spec. 21:880–892.

    CAS  Google Scholar 

  • Talbot, H. M., Rohmer, M., and Farrimond, P. 2007b. Structural characterisation of unsaturated bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spec. 21:1613–1622.

    CAS  Google Scholar 

  • Talbot, H. M., Summons, R. E., Jahnke, L. L., Cockell, C. S., Rohmer, M., and Farrimond, P. 2008. Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings. Org. Geochem. 39:232–263.

    CAS  Google Scholar 

  • Tarnocai C., Canadell J. G., Schuur E. A. G., Kuhry P., Mazhitova G., and Zimov S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cy. 23, doi:10.1029/2008GB003327.

  • Thevenot, M., Dignac, M. F., and Rumpel, C. 2010. Fate of lignins in soils: A review. Soil Biol. Biochem. 42:1200–1211.

    CAS  Google Scholar 

  • Torn, M. S., Biraud, S. C., Still, C. J., Riley, W. J., and Berry, J. A. 2011. Seasonal and interannual variability in 13 C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains. Tellus B 63:181–195.

    CAS  Google Scholar 

  • Trumbore, S. 2006. Carbon respired by terrestrial ecosystems - Recent progress and challenges. Glob. Change Biol. 12:141–153.

    Google Scholar 

  • Trumbore, S. E. 2009. Radiocarbon and Soil Carbon Dynamics. Annu. Rev. Earth Pl. Sci. 37:47–66.

    CAS  Google Scholar 

  • Trumbore, S. E. and Czimczik, C. I. 2008. Geology - An uncertain future for soil carbon. Science 321:1455–1456.

    PubMed  CAS  Google Scholar 

  • Tulloch, A. P. 1976. Chemistry of waxes of higher plants, pp. 235–287, in P. E. Kolattukudy (ed.), Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  • van Bergen, P. F., Bull, I. D., Poulton, P. R., and Evershed, R. P. 1997. Organic geochemical studies of soils from the Rothamsted classical experiments - I. Total lipid extracts, solvent insoluble residues and humic acids from broadbalk wilderness. Org. Geochem. 26:117–135.

    Google Scholar 

  • Volkman, J. K., Barret, S. M., Blackburn, S. I., Mansour, M. P., Sikes, E. L., and Gelin, F. 1998. Microalgal biomarkers: a review of recent research developments. Org. Geochem. 29:1163–1179.

    CAS  Google Scholar 

  • Weete, J. D. 1976. Algal and fungal waxes, pp. 349–418, in P. E. Kolattukudy (ed.), Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  • Weijers, J. W. H., Schouten, S., Spaargaren, O. C., and Sinninghe Damsté, J. S. 2006. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX(86) proxy and the BIT index. Org. Geochem. 37:1680–1693.

    CAS  Google Scholar 

  • Weijers, J. W. H., Schouten, S., Van Den Donker, J. C., Hopmans, E. C., and Sinninghe Damsté, J. S. 2007. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim. Cosmochim. Acta 71:703–713.

    CAS  Google Scholar 

  • Weijers, J. W. H., Bernhardt, B., Peterse, F., Werne, J. P., Dungait, J. A. J., Schouten, S., and Sinninghe Damsté, J. S. 2011. Absence of seasonal patterns in MBT-CBT indices in mid-latitude soils. Geochim. Cosmochim. Acta 75:3179–3190.

    CAS  Google Scholar 

  • West, A. W., Grant, W. D., and Sparling, G. P. 1987. Use of ergosterol, diaminopimelic acid and glucosamine contents of soils to monitor changes in microbial populations. Soil Biol. Biochem. 19:607–612.

    CAS  Google Scholar 

  • White, D. M., Hodkinson, I. D., Seelen, S. J., and Coulson, S. J. 2007. Characterization of soil carbon from a Svalbard glacier-retreat chronosequence using pyrolysis-GC/MS analysis. J. Anal. Appl. Pyrol. 78:70–75.

    CAS  Google Scholar 

  • Winkler, A., Haumaier, L., and Zech, W. 2001. Variation in hopanoid composition and abundance in forest soils during litter decomposition and humification. Org. Geochem. 32:1375–1385.

    CAS  Google Scholar 

  • Wise, D. H. and Schaefer, M. 1994. Decomposition of leaf litter in a mull beech forest: comparison between canopy and herbaceous species. Pedobiologia 38:269–288.

    Google Scholar 

  • Xu, Y., Cooke, M. P., Talbot, H. M., and Simpson, M. J. 2009. Bacteriohopanepolyol signatures of bacterial populations in Western Canadian soils. Org. Geochem. 40:79–86.

    CAS  Google Scholar 

  • Yan, B. and Stark, R. E. 2000. Biosynthesis, molecular structure, and domain architecture of potato suberin: A 13 C NMR study using isotopically labeled precursors. J. Agr. Food Chem. 48:3298–3304.

    CAS  Google Scholar 

  • Zelles, L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. Fert. Soils 29:111–129.

    CAS  Google Scholar 

  • Zhu, C., Weijers, J. W. H., Wagner, T., Pan, J. M., Chen, J. F., and Pancost, R. D. 2011. Sources and distributions of tetraether lipids in surface sediments across a large river-dominated continental margin. Org. Geochem. 42:376–386.

    CAS  Google Scholar 

Download references

Acknowledgments

The Natural Science and Engineering Research Council (NSERC) of Canada is thanked for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myrna J. Simpson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, M.J., Simpson, A.J. The Chemical Ecology of Soil Organic Matter Molecular Constituents. J Chem Ecol 38, 768–784 (2012). https://doi.org/10.1007/s10886-012-0122-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0122-x

Keywords

Navigation