Skip to main content
Log in

Ecology and Evolution of Soil Nematode Chemotaxis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plants influence the behavior of and modify community composition of soil-dwelling organisms through the exudation of organic molecules. Given the chemical complexity of the soil matrix, soil-dwelling organisms have evolved the ability to detect and respond to these cues for successful foraging. A key question is how specific these responses are and how they may evolve. Here, we review and discuss the ecology and evolution of chemotaxis of soil nematodes. Soil nematodes are a group of diverse functional and taxonomic types, which may reveal a variety of responses. We predicted that nematodes of different feeding guilds use host-specific cues for chemotaxis. However, the examination of a comprehensive nematode phylogeny revealed that distantly related nematodes, and nematodes from different feeding guilds, can exploit the same signals for positive orientation. Carbon dioxide (CO2), which is ubiquitous in soil and indicates biological activity, is widely used as such a cue. The use of the same signals by a variety of species and species groups suggests that parts of the chemo-sensory machinery have remained highly conserved during the radiation of nematodes. However, besides CO2, many other chemical compounds, belonging to different chemical classes, have been shown to induce chemotaxis in nematodes. Plants surrounded by a complex nematode community, including beneficial entomopathogenic nematodes, plant-parasitic nematodes, as well as microbial feeders, are thus under diffuse selection for producing specific molecules in the rhizosphere that maximize their fitness. However, it is largely unknown how selection may operate and how belowground signaling may evolve. Given the paucity of data for certain groups of nematodes, future work is needed to better understand the evolutionary mechanisms of communication between plant roots and soil biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abou-Setta, M. M. and Duncan, L. W. 1998. Attraction of Tylenchulus semipenetrans and Meloidogyne javanica to salts in vitro. Nematropica 28(1):49–59.

    Google Scholar 

  • Ali, J. G., Alborn, H. T., Campos-Herrera, R., Kaplan, F., Duncan, L. W., Koppenhofer, A., Rodriguez-Saona, C., and Stelinski, L. L. 2012 In press. Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats. PLos ONE.

  • Ali, J., Alborn, H., and Stelinski, L. 2010. Subterranean herbivore-induced volatiles released by Citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J. Chem. Ecol. 36(4):361–368.

    Article  PubMed  CAS  Google Scholar 

  • Ali, J. G., Alborn, H. T., and Stelinski, L. L. 2011. Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J. Ecol. 99(1):26–35.

    Article  CAS  Google Scholar 

  • Anderson, R. V. and Coleman, D. C. 1981. Population development and interactions between two species of bacteriophagic nematodes. Nematologica 27(1):6–19.

    Article  Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M. 2006. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol. 57:233–266.

    Article  PubMed  CAS  Google Scholar 

  • Balanova, J. and Balan, J. 1991. Chemotaxis-controlled search for food by the nematode Panagrellus redivivus. Biologia 46:257–263.

    Google Scholar 

  • Baldwin, J. G., Nadler, S. A., and Adams, B. J. 2004. Evolution of plant parasitism among nematodes. Annu. Rev. Phytopathol. 42:83–105.

    Article  PubMed  CAS  Google Scholar 

  • Bargmann, C. I. and Horvitz, H. R. 1991. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7:729–742.

    Article  PubMed  CAS  Google Scholar 

  • Bargmann, C. I. and Mori, I. 1997. Chemotaxis and thermotaxis, pp. 717–737, in D. L. Riddle, T. Blumenthal, B. J. Meyer, and J. R. Preiss (eds.), C. elegans II, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY).

    Google Scholar 

  • Bezemer, T. M. and van Dam, N. M. 2005. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20(11):617–624.

    Article  PubMed  Google Scholar 

  • Bilgrami, A. L. 1997. Nematode biopesticides. Aligarh Muslim University, Aligarh, India. 262 p.

    Google Scholar 

  • Bilgrami, A. L., Kondo, E., and Yoshiga, T. 2001a. Absolute and relative preferential attraction of Steinernema glaseri to excretory substances of insects. Int. J. Nematol. 11:27–34.

    Google Scholar 

  • Bilgrami, A. L., Kondo, E., and Yoshiga, T. 2001b. Attraction response of Steinernema glaseri in presence of plant roots and leaves. Ann. Plant Protect. Sci. 9:258–263.

    Google Scholar 

  • Bird, A. F. 1960. Additional notes on the attractiveness of roots to plant parasitic nematodes. Nematologica 5:217.

    Article  Google Scholar 

  • Blaxter, M. L., de Ley, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., Vanfleteren, J. R., Mackey, L. Y., Dorris, M., Frisse, L. M., et al. 1998. A molecular evolutionary framework for the phylum Nematoda. Nature 392(6671):71–75.

    Article  PubMed  CAS  Google Scholar 

  • Boff, M. I. C., Zoon, F. C., and Smits, P. H. 2001. Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomol. Exp. Appl. 98(3):329–337.

    Article  Google Scholar 

  • Boff, M. I. C., van Tol, R., and Smits, P. H. 2002. Behavioural response of Heterorhabditis megidis towards plant roots and insect larvae. Biocontrol 47(1):67–83.

    Article  Google Scholar 

  • Bonkowski, M., Villenave, C., and Griffiths, B. 2009. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321(1–2):213–233.

    Article  CAS  Google Scholar 

  • Buyer, J. S., Roberts, D. P., and Russek-Cohen, E. 2002. Soil and plant effects on microbial community structure. Can. J. Microbiol. 48(11):955–964.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, J. F. and Gaugler, R. 1993. Nictation behaviour and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour 126:155–169.

    Article  Google Scholar 

  • Campbell, J. F. and Gaugler, R. R. 1997. Inter-specific variation in entomopathogenic nematode foraging strategy: Dichotomy or variation along a continuum? Fundam. Appl. Nematol. 20(4):393–398.

    Google Scholar 

  • Campbell, J. F., Lewis, E. E., Stock, S. P., Nadler, S., and Kaya, H. K. 2003. Evolution of host search strategies in entomopathogenic nematodes. J. Nematol. 35(2):142–145.

    PubMed  CAS  Google Scholar 

  • Castro, C. E., Belser, N. O., McKinney, H. E., and Thomason, I. J. 1989. Quantitative bioassay for chemotaxis with plant-parasitic nematodes: attractant and repellent fractions for Meloidogyne incognita from cucumber roots. J. Chem. Ecol. 15(4):1297–1309.

    Article  Google Scholar 

  • Chapman, S. K., Langley, J. A., Hart, S. C., and Koch, G. W. 2006. Plants actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytol. 169(1):27–34.

    Article  PubMed  CAS  Google Scholar 

  • Chitwood, D. J. 2002. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol. 40:221–249.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, D. C. 1976. A review or root production processes and their infuence on soil biota in terrestrial ecosystems, pp. 417–434, in J. M. Anderson and A. Macfadyen (eds.), The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Blackwell Scientific Publications, London.

    Google Scholar 

  • Coleman, D. C., Crossley, D. A., and Hendrix, P. F. 2004. Fundamentals of Soil Ecology. Elsevier, Burlington, San Diego, London. 386 p.

    Google Scholar 

  • Curtis, R. H. C., Robinson, A. F., and Perry, R. N. 2009. Hatch and host location, pp. 139–155, in R. N. Perry, M. Moens, and J. L. Starr (eds.), Root-Knot Nematodes. CAB International, Wallingford, UK and Cambridge, USA.

    Chapter  Google Scholar 

  • De Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R., Berg, M. P., de Ruiter, P. C., Verhoef, H. A., Bezemer, T. M., and van der Putten, W. H. 2003. Soil invertebrate fauna enhances grassland succession and diversity. Nature 422(6933):711–713.

    Article  PubMed  CAS  Google Scholar 

  • De Deyn, G. B., Raaijmakers, C. E., and van der Putten, W. H. 2004. Plant community development is affected by nutrients and soil biota. J. Ecol. 92(5):824–834.

    Article  Google Scholar 

  • De La Peña, E., Rodriguez-Echeverria, S., van der Putten, W. H., Freitas, H., and Moens, M. 2006. Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol. 169(4):829–840.

    Article  PubMed  Google Scholar 

  • de Ruiter, P. C., Moore, J. C., Zwart, K. B., Bouwman, L. A., Hassink, J., Bloem, J., de Vos, J. A., Marinissen, J. C. Y., Didden, W. A. M., Lebbink, G., et al. 1993. Simulation of nitrogen mineralization in the below-ground food webs of two winter wheat fields. J. Appl. Ecol. 30:95–106.

    Article  Google Scholar 

  • Devine, K. J. and Jones, P. W. 2003. Investigations into the chemoattraction of the potato cyst nematodes Globodera rostochiensis and G. pallida towards fractionated potato root leachate. Nematology 5(1):65–75.

    Article  Google Scholar 

  • Dougherty, E. C. and Nigon, V. 1949. A new species of the free-living nematode genus Rhabdilis of interest in comparative physiology and genetics. J. Parasitol. 35(suppl):11.

    Google Scholar 

  • Dusenbery, D. B. 1980. Responses of the nematode Caenorhabditis elegans to controlled chemical stimulation. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 136(4):327–331.

    Article  Google Scholar 

  • Dusenbery, D. B. 1987. Theoretical range over which bacteria and nematodes locate plant roots using carbon dioxide. J. Chem. Ecol. 13(7):1617–1624.

    Article  Google Scholar 

  • Edmunds, J. E. and Mai, W. F. 1967. Effects of Fusarium oxysporum on movement of Pratylenchus penetrans towards alfalfa roots. Phytopathology 57:468–471.

    Google Scholar 

  • Ennis, D. E., Dillon, A. B., and Griffin, C. T. 2010. Simulated roots and host feeding enhance infection of subterranean insects by the entomopathogenic nematode Steinernema carpocapsae. J. Invert. Pathol. 103(2):140–143.

    Article  CAS  Google Scholar 

  • Erb, M., Ton, J., Degenhardt, J., and Turlings, T. C. J. 2008. Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiol. 146(3):867–874.

    Article  PubMed  CAS  Google Scholar 

  • Fogel, R. 1985. Roots as primary producers in below-ground ecosystems, pp. 23–36, in A. H. Fitter, D. Atkinson, D. J. Read, and M. B. Usher (eds.), Ecological Interactions in Soil: Plants, Microbes, and Animals. Blackwell, Oxford.

    Google Scholar 

  • Franco, J., Main, G., and Oros, R. 1999. Trap crops as a component for the integrated management of Globodera spp. (potato cyst nematodes) in Bolivia. Nematropica 29:51–60.

    Google Scholar 

  • Fu, S., Ferris, H., Brown, D., and Plant, R. 2005. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biol. Biochem. 37:1979–1987.

    Article  CAS  Google Scholar 

  • Gange, A. C. and Brown, V. K. 2002. Multitrophic Interactions in Terrestrial Systems. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Gaugler, R. (ed.) 2002. Entomopathogenic Nematology. CABI, New York, USA.

    Google Scholar 

  • Gaugler, R. and Bilgrami, A. L. (eds.) 2004. Nematode Behaviour. CABI, New York, USA.

    Google Scholar 

  • Gaugler, R. and Kaya, H. K. 1990. Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Giebel, J. 1982. Mechanism of resistance to plant nematodes. Annu. Rev. Phytopathol. 20:257–279.

    Article  CAS  Google Scholar 

  • Goode, M. and Dusenbery, D. B. 1985. Behavior of tethered Meloidogyne incognita. J. Nematol. 17(4):460–464.

    PubMed  CAS  Google Scholar 

  • Grewal, P. S., Lewis, E. E., Gaugler, R., and Campbell, J. F. 1994. Host finding behavior as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108:207–215.

    Article  Google Scholar 

  • Hallem, E. A., Dillman, A. R., Hong, A. V., Zhang, Y. J., Yano, J. M., Demarco, S. F., and Sternberg, P. W. 2011. A sensory code for host seeking in parasitic nematodes. Curr. Biol. 21(5):377–383.

    Article  PubMed  CAS  Google Scholar 

  • Hara, A. H., Gaugler, R., Kaya, H. K., and Lebeck, L. M. 1991. Natural populations of entomopathogenic nematodes (Rhabditida, Heterorhabditidae, Steinernematidae) from the Hawaiian islands. Environ. Entomol. 20(1):211–216.

    Google Scholar 

  • Hare, J. D. 2011. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 56:161–180.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, E. N. 1952. Bioluminescence. Academic, New York.

    Google Scholar 

  • Hedlund, K., Griffiths, B., Christensen, S., Scheu, S., Setälä, H., Tscharntke, T., and Verhoef, H. 2004. Trophic interactions in changing landscapes: responses of soil food webs. Basic Appl. Ecol. 5(6):495–503.

    Article  Google Scholar 

  • Hilliard, M. A., Bargmann, C. I., and Bazzicalupo, P. 2002. C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr. Biol. 12(9):730–734.

    Article  PubMed  CAS  Google Scholar 

  • Hiltpold, I., Baroni, M., Toepfer, S., Kuhlmann, U., and Turlings, T. C. J. 2010. Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. J. Exp. Biol. 213(14):2417–2423.

    Article  PubMed  CAS  Google Scholar 

  • Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., Bakker, J., and Helder, J. 2006. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol. Biol. Evol. 23(9):1792–1800.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Huang, P., Robinson, M. K., Stern, M. J., and Jin, Y. 2003. UNC-71, a disintegrin and metalloprotease (ADAM) protein, regulates motor axon guidance and sex myoblast migration in C. elegans. Development 130(14)):3147–3161.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, M. D. 2001. Out of sight, out of mind: the impacts of root-feeding insects in natural and managed systems. Agric. For. Entomol. 3(1):3–9.

    Article  Google Scholar 

  • Ingham, R. E., Trofymow, J. A., Ingham, E. R., and Coleman, D. C. 1985. Interactions of bacteria, fungi and their nematode grazers on nutrient cycling and plant growth. Ecol. Monogr. 55:119–140.

    Article  Google Scholar 

  • Ishibashi, N. and Kondo, E. 1990. Behavior of infective juveniles, in R. Gaugler and H. K. Kaya (eds.), Entomopathogenic Nematodes in Biological Control. CRC, Boca Raton.

    Google Scholar 

  • Johnson, S. N. and Gregory, P. J. 2006. Chemically-mediated host-plant location and selection by root-feeding insects. Physiol. Entomol. 31(1):1–13.

    Article  CAS  Google Scholar 

  • Jones, J. 2002. Nematode sense organs, pp. 369–387, in D. L. Lee (ed.), The Biology of Nematodes. Taylor & Francis Inc, New York, NY, USA.

    Google Scholar 

  • Kaplan, I., Halitschke, R., Kessler, A., Sardanelli, S., and Denno, R. F. 2008. Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology 89(2):392–406.

    Article  PubMed  Google Scholar 

  • Karban, R. and Baldwin, I. 1997. Induced Responses to Herbivory. University Press of Chicago, Chicago.

    Google Scholar 

  • Kaya, H. K. and Gaugler, R. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38:181–206.

    Article  Google Scholar 

  • Klinger, J. 1963. Die Orientierung von Ditylenchus dipsaci in gemessen kunstlichen und biologischen CO2 Gradienten. Nematologica 9:185–199.

    Article  Google Scholar 

  • Klinger, J. 1970. The reaction of Aphelenchoides fragrariae to slit-like micro-openings and to stomatal diffusion gases. Nematologica 16:417–422.

    Article  Google Scholar 

  • Klink, J. W. 1969. Studies on the host finding mechanisms of Neotylenchus linfordi. J. Nematol. 2:106–117.

    Google Scholar 

  • Kollner, T. G., Held, M., Lenk, C., Hiltpold, I., Turlings, T. C. J., Gershenzon, J., and Degenhardt, J. 2008. A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20(2):482–494.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. L. 2002. Behaviour, pp. 369–387, in D. L. Lee (ed.), The Biology of Nematodes. Taylor & Francis Inc., New York, NY, USA.

    Chapter  Google Scholar 

  • Lewis, E. E., Gaugler, R., and Harrison, R. 1992. Entomopathogenic nematode host finding—Response to host contact cues by cruise and ambush foragers. Parasitology 105:309–315.

    Article  Google Scholar 

  • Lewis, E. E., Gaugler, R., and Harrison, R. 1993. Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can. J. Zool.-Rev. Can. Zool. 71(4):765–769.

    Article  Google Scholar 

  • Luscher, A., Daepp, M., Blum, H., Hartwig, U. A., and Nosberger, J. 2004. Fertile temperate grassland under elevated atmospheric CO2—role of feed-back mechanisms and availability of growth resources. Eur. J. Agron. 21(3):379–398.

    Article  Google Scholar 

  • Masamune, T., Anetai, M., Takasugi, M., and Katsui, N. 1982. Isolation of a natural hatching stimulus, glycinoeclepin A, for the soybean cyst nematode. Nature 297(5866):495–496.

    Article  CAS  Google Scholar 

  • McCallum, M. E. and Dusenbery, D. B. 1992. Computer tracking as a behavioral GC detector: Nematode responses to vapor of host roots. J. Chem. Ecol. 18(4):585–592.

    Article  CAS  Google Scholar 

  • Moens, T., Verbeeck, L., de Maeyer, A., Swings, J., and Vincx, M. 1999. Selective attraction of marine bacterivorous nematodes to their bacterial food. Mar. Ecol. Prog. Ser. 176:165–178.

    Article  Google Scholar 

  • Mortimer, S. R., Putten, W. H. V. D., and Brown, V. K. 1999. Insect and nematode herbivory below ground: interactions and role in vegetation succession, pp. 205–238, in H. Olff, V. K. Brown, and R. H. Drent (eds.), HERBIVORES: Between Plants and Predators. Blackwell Science Ltd., Oxford.

    Google Scholar 

  • Bert, W., Karssen, G., and Helder J. 2011. Phylogeny and evolution of nematodes, pp 45–60, in J Jones, G Gheysen, C Fenoll (eds), Genomics and Molecular Genetics of Plant-Nematode Interactions. Springer Science+Business Media B.V.

  • Erb M., Glauser G., and Robert C.A.M. 2012. Induced immunity against belowground insect herbivores-activation of defenses in the absence of a jasmonate burst. J. Chem. Ecol. 38(6):this issue.

  • Hiltpold, I., and Turlings, T.C.J. 2012. Manipulation of chemically mediated interactions in agricultural soils to enhance the control of crop pests. J. Chem. Ecol. 38(6):this issue.

  • JOHNSON, S.N., and NIELSEN, U.N. 2012. Foraging in the dark—Chemically mediated host plant location by belowground insect herbivores. J. Chem. Ecol. 38(6): this issue.

  • Lewis E.E. 2002. Behavioural ecology, pp 205–223, in R Gaugler (ed.), Entomopathogenic Nematology. CAB International.

  • Sengupta P., Colbert H.A., Kimmel B.E., Dwyer N., Bargmann C.I. 1993. The cellular and genetic basis of olfactory responses in Caenorhabditis elegans, pp. 235–250. Ciba Foundation Symposia.

  • Turlings T.C.J., Hiltpold I., Rasmann S. 2012. The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil in press.

  • O’Halloran, D. M. and Burnell, A. M. 2003. An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology 127:375–385.

    Article  PubMed  Google Scholar 

  • Perry, R. N. 1997. Plant signals in nematode hatching and attraction, pp. 38–50, in C. Fenoll, F. M. W. Grundler, and S. A. Ohl (eds.), Cellular and Molecular Aspects of Plant–Nematode Interactions. Kluwer Academic Press, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Perry, R. N. and Aumann, J. 1998. Behaviour and sensory responses, pp. 75–102, in R. N. Perry and D. J. Wright (eds.), The Physiology and Biochemistry of Free-living and Plant-parasitic Nematodes. CAB International Press, Wallingford, UK.

    Google Scholar 

  • Perry, R. N. and Wesemael, W. M. L. 2008. Host plant effects on hatching of root-knot nematodes. Russ. J. Nemat. 16(1):1–5.

    Google Scholar 

  • Perry, R. N., Moens, M., and Starr, J. L. 2009. Root-knot Nematodes. CAB International, Wallingford, UK and Cambridge, USA. 488 p.

    Book  Google Scholar 

  • Pline, M. and Dusenbery, D. B. 1987. Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking. J. Chem. Ecol. 13(4):873–888.

    Article  Google Scholar 

  • Poinar, G. O. 1990. Taxonomy and Biology of Steneirnematidae and Herorhabditidae, in R. Gaugler and H. K. Kaya (eds.), Entomopathogenic Nematodes in Biological Control. CRC, Boca Raton.

    Google Scholar 

  • Poinar, G. O. 1993. Origins and phylogentic relationships of the entomophilic rhabditids, Heterorhabditis and Steinnernema. Fundam. Appl. Nematol. 16:333–338.

    Google Scholar 

  • Poinar, G. O. and Georgis, R. 1990. Description and field application of the HP88 strain of Heterorhabditis bacteriophora. Rev. Nématol. 13:387–393.

    Google Scholar 

  • Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., and Weis, A. E. 1980. Interactions among three trophic levels: influence of plant on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65.

    Article  Google Scholar 

  • Prot, J. C. 1980. Migration of plant-parasitic nematodes towards plant roots. Rev. Nématol. 7:374–379.

    Google Scholar 

  • Rasmann, S. and Agrawal, A. A. 2008. In defense of roots: A research agenda for studying plant resistance to belowground herbivory. Plant Physiol. 146(3):875–880.

    Article  PubMed  CAS  Google Scholar 

  • Rasmann, S. and Turlings, T. C. J. 2008. First insights into specificity of belowground tritrophic interactions. Oikos 117(3):362–369.

    Article  Google Scholar 

  • Rasmann, S., Kollner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737.

    Article  PubMed  CAS  Google Scholar 

  • Rasmann, S., Bauerle, T. L., Poveda, K., and Vannette, R. 2011a. Predicting root defence against herbivores during succession. Funct. Ecol. 25(2):368–379.

    Article  Google Scholar 

  • Rasmann, S., Erwin, A. C., Halitschke, R., and Agrawal, A. A. 2011b. Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J. Ecol. 99(1):16–25.

    Article  CAS  Google Scholar 

  • Reinecke, A., Muller, F., and Hilker, M. 2008. Attractiveness of CO(2) released by root respiration fades on the background of root exudates. Basic Appl. Ecol. 9(5):568–576.

    Article  CAS  Google Scholar 

  • Riddle, D. L. and Bird, A. F. 1985. Responses of the plant parasitic nematodes Rotylenchulus reniformis, Anguina agrostis and Meloidogyne javanica to chemical attractants. Parasitology 91(01):185–195.

    Article  PubMed  CAS  Google Scholar 

  • Riga, E. 2004. Orientation behaviour, pp. 63–90, in R. Gaugler and A. L. Bilgrami (eds.), Nematode Behaviour. CAB International Press, Wallingford, UK and Cambridge, USA.

    Chapter  Google Scholar 

  • Robinson, A. F. 1995. Optimal release rates for attracting Meloidogyne incognita by alginate pellets containing hyphae of Monacrosporium cionopagum, M. ellipsosporum, or Hirsutella rhossiliensis. J. Nematol. 28:133–147.

    Google Scholar 

  • Rolfe, R. N., Barrett, J., and Perry, R. N. 2000. Analysis of chemosensory responses of second stage juveniles of Globodera rostochiensis using electrophysiological techniques. Nematology 2(5):523–533.

    Article  CAS  Google Scholar 

  • Schenk, H., Driessen, R. A. J., de Gelder, R., Goubitz, K., Nieboer, H., Bruggemann-Rotgans, I. E. M., and Diepenhorst, P. 1999. Elucidation of the structure of Solanoeclepin A, a natural hatching factor of potato and tomato cyst nematodes, by single-crystal x-ray diffraction. Croat Chem Acta 72(2–3):593–606.

    CAS  Google Scholar 

  • Schoonhoven, L. M., van Loon, J. J. A., and Dicke, M. 2005. Insect-plant Biology. Oxford University Press, Oxford.

    Google Scholar 

  • Strong, D. R., Kaya, H. K., Whipple, A. V., Child, A. L., Kraig, S., Bondonno, M., Dyer, K., and Maron, J. L. 1996. Entomopathogenic nematodes: natural enemies of root-feeding caterpillars on bush lupine. Oecologia 108(1):167–173.

    Article  Google Scholar 

  • Strong, D. R., Whipple, A. V., Child, A. L., and Dennis, B. 1999. Model selection for a subterranean trophic cascade: root-feeding caterpillars and entomopathogenic nematodes. Ecology 80(8):2750–2761.

    Article  Google Scholar 

  • Tietjen, J. H., Lee, J. J., Rullman, J., Greengart, A., and Trompeter, J. 1970. Gnotobiotic culture and physiological ecology of the marine nematode, Rhabditis marina. Bastian. Limnol. Oceanogr. 15:535–543.

    Article  Google Scholar 

  • Tscharntke, T. and Hawkins, B. A. 2002. Multitrophic Level Interactions. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Valette, C., Andary, C., Geiger, J. P., Sarah, J. L., and Nicole, M. 1998. Histochemical and cytochemical investigations of phenols in roots of banana infected by the burrowing nematode Radopholus similis. Phytopathology 88(11):1141–1148.

    Article  PubMed  CAS  Google Scholar 

  • Van Dam, N. M. 2009. Belowground herbivory and plant defenses. Annu. Rev. Ecol. Evol. Syst. 40:373–391.

    Article  Google Scholar 

  • Van der Putten, W. H. 2003. Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology 84(9):2269–2280.

    Article  Google Scholar 

  • van der Putten, W. H., Vet, L. E. M., Harvey, J. A., and Wackers, F. L. 2001. Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol. Evol. 16(10):547–554.

    Article  Google Scholar 

  • Van der Putten, W. H., Bardgett, R. D., de Ruiter, P. C., Hol, W. H. G., Meyer, K. M., Bezemer, T. M., Bradford, M. A., Christensen, S., Eppinga, M. B., Fukami, T., et al. 2009. Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161(1):1–14.

    Article  PubMed  Google Scholar 

  • van Tol, R., van der Sommen, A. T. C., Boff, M. I. C., van Bezooijen, J., Sabelis, M. W., and Smits, P. H. 2001. Plants protect their roots by alerting the enemies of grubs. Ecol. Lett. 4(4):292–294.

    Article  Google Scholar 

  • Vet, L. E. M. and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.

    Article  Google Scholar 

  • Viglierchio, D. R. 1990. Carbon dioxide sensing by Panagrellus silusiae and Ditylenchus dipsaci. Rev. Nématol. 13:425–432.

    Google Scholar 

  • Viketoft, M., Bengtsson, J., Sohlenius, B., Berg, M. P., Petchey, O., Palmborg, C., and Huss-Danell, K. 2009. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology 90(1):90–99.

    Article  PubMed  Google Scholar 

  • Von Lengerken H. 1929. The salt beetle of the North- and East sea coast with consideration of the neighbouring seas and the Mediterranean, the Black and the Caspian Sea - An ecological biological geographical study. Zeitschrift Fur Wissenschaftliche Zoologie 135(1/2):1–162.

    Google Scholar 

  • Walker, T. S., Bais, H. P., Grotewold, E., and Vivanco, J. M. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132(1):44–51.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. L., Bruening, G., and Williamson, V. M. 2009. Determination of preferred pH for root-knot nematode aggregation using Pluronic F-127 Gel. J. Chem. Ecol. 35(10):1242–1251.

    Article  PubMed  CAS  Google Scholar 

  • Ward, S. 1978. Nematode chemotaxis and chemoreceptors, pp. 143–168, in G. L. Hazelbauer (ed.), Taxis and Behavior (Receptors and Recognition). Chapman and Hall, London.

    Google Scholar 

  • Wardle, D. A. 2002. Communities and Ecosystems: Linking the Aboveground and Belowgroound Components. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Whittaker, J. B. 2003. Root–animal interaction, pp. 363–385, in H. de Kroon and E. J. W. Wisser (eds.), Root Ecology. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Wuyts, N., Lognay, G., Verscheure, M., Marlier, M., De Waele, D., and Swennen, R. 2007. Potential physical and chemical barriers to infection by the burrowing nematode Radopholus similis in roots of susceptible and resistant banana (Musa spp.). Plant Pathol. 56(5):878–890.

    Article  CAS  Google Scholar 

  • WYSS, U. 2002. Feeding behaviour of plant-parasitic nematodes, pp. 369–387, in D. L. Lee (ed.), The Biology of Nematodes. Taylor & Francis Inc., New York, NY, USA.

    Google Scholar 

  • Yeates, G. W. 1999. Effects of plants on nematode community structure. Annu. Rev. Phytopathol. 37(1):127–149.

    Article  PubMed  CAS  Google Scholar 

  • Yeates, G. W., Ferris, H., Moens, T., and Van Der Putten, W. H. 2009. Role of nematodes in ecosystems, pp. 1–44, in M. J. Wilson and T. Kakouli-Duarte (eds.), Nematodes as Environmental Indicators. CAB International, Walingford, UK.

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Larry W. Duncan, Raquel Campos-Herrera, Matthias Erb, and an anonymous reviewer for helpful comments. Our research is supported by an Ambizione fellowship from the Swiss National Science Foundation (PZ00P3_131956/1 to SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rasmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmann, S., Ali, J.G., Helder, J. et al. Ecology and Evolution of Soil Nematode Chemotaxis. J Chem Ecol 38, 615–628 (2012). https://doi.org/10.1007/s10886-012-0118-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0118-6

Keywords

Navigation