Skip to main content
Log in

Leaf Volatile Emissions of Betula pendula during Autumn Coloration and Leaf Fall

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Deciduous trees remobilize the nitrogen in leaves during the process of autumn coloration, thus providing a high quality food source for aphids preparing to lay over-wintering eggs. It has been suggested that aphids may use volatile organic compounds (VOCs) to: (a) select leaves where nutrient remobilization has started and induced defenses are reduced; and (b) detect the time of leaf abscission. We analyzed VOCs emitted by the foliage of Betula pendula Roth. during autumn coloration and from leaf litter just after leaf fall. We tested the hypothesis that costly, photosynthesis-related terpenes and other herbivore-induced VOCs related to attraction of aphid parasitoids and predators are reduced during the coloration process. We also investigated if the VOC emission profile of abscising leaves is different from that of early stage yellowing leaves. Enemy-luring compounds (E)-β-ocimene, linalool, and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted only from the green foliage. Methyl salicylate (MeSa), known to recruit predatory bugs and attract migrant aphids, was emitted until the first stage of color change. Cis-3-hexenol, an indicator of cellular disintegration, became dominant in the emissions from abscising leaves and from fresh leaf litter. We discuss the ecological significance of the observed changes in birch leaf VOC profiles during the process of autumn senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Archetti, M. 2000. The origin of autumn colours by coevolution. J. Theor. Biol. 205:625–630.

    Article  PubMed  CAS  Google Scholar 

  • Archetti, M. 2009. Evidence from the domestication of apple for the maintenance of autumn colours by coevolution. Proc. Royal Soc. London. Series B, Biol. Sci. 276:2575–2580.

    Article  CAS  Google Scholar 

  • Archetti, M. and Brown, S.P. 2006. Putting ‘red alerts’ in an ecological and evolutionary context. BioEssays 28:959–959.

    Article  PubMed  Google Scholar 

  • Archetti, M., Döring, T.F., Hagen, S.B., Hughes, N.M., Leather, S.R., Lee, D.W., Lev-Yadun, S., Manetas, Y., Ougham, H.J., Schaberg, P.G. et al. 2009. Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends Ecol. Evol. 24:166–173.

    Article  PubMed  Google Scholar 

  • Arimura, G.I., Kopke, S., Kunert, M., Volpe, V., David, A., Brand, P., Dabrowska, P., Maffei, M.E., and Boland, W. 2008. Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol. 146:965–973.

    Article  PubMed  CAS  Google Scholar 

  • Beale, M.H., Birkett, M.A., Bruce, T.J.A., Chamberlain, K., Field, L.M., Huttly. A.K., Martin, J.L., Parker, R., Phillips, A.L., Pickett, J.A., Prosser, I.M., Shewry, P.R., Smart, L.E., Wadhams, L.J., Woodcock, C.M., and Zhang, Y.H. 2006. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc. Nat. Acad. Sci. U. S. A. 103:10509–10513.

    Article  CAS  Google Scholar 

  • Blande, J.D., Korjus, M., and Holopainen, J.K. 2010. Foliar methyl salicylate emissions indicate prolonged aphid infestation on silver birch and black alder. Tree Physiol. 30:404–416.

    Article  PubMed  CAS  Google Scholar 

  • Blande, J.D., Tiiva, P., Oksanen, E., and Holopainen, J.K. 2007. The emission of herbivore induced volatile terpenoids from two hybrid aspen (Populus tremula x tremuloides) clones under ambient and elevated ozone concentrations in the field. Global Change Biol. 13: 2538–2550.

    Article  Google Scholar 

  • Bruggemann, N. and Schnitzler, J.P. 2001. Influence of powdery mildew (Microsphaera alphitoides) on isoprene biosynthesis and emission of pedunculate oak (Quercus robur L.) leaves. J. Appl. Bot. 75:91–96.

    CAS  Google Scholar 

  • Cottrell, T.E., Wood, B.W., and Ni, X. 2009. Chlorotic feeding injury by the black pecan aphid (Hemiptera: Aphididae) to pecan foliage promotes aphid settling and nymphal development. Environ. Entomol. 38:411–416.

    Article  PubMed  Google Scholar 

  • D’auria, J.C., Pichersky, E., Schaub, A., Hansel, A., and Gershenzon J. 2007. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J. 49:194–207.

    Article  PubMed  CAS  Google Scholar 

  • Dicke M. and Baldwin I.T. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 15:167–175.

    Article  PubMed  CAS  Google Scholar 

  • Evain, S., Flexas, J., and Moya, I. 2004. A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence. Rem. Sens. Environ. 91:175–185.

    Article  Google Scholar 

  • Fall, R., Karl, T., Hansel, A., Jordan, A., and Lindinger W. 1999. Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry. J. Geophys. Res. Atmos. 104(D13):15963–15974.

    Article  CAS  Google Scholar 

  • Fares, S., Oksanen, E., Lännenpää, M., Julkunen-Tiitto, R., and Loreto, F. 2010. Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations. Photosynth. Res. 104:61–74.

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon, J. 1994. Metabolic costs of terpenoid accumulation in higher-plants. J. Chem. Ecol. 20:1281–1328.

    Article  CAS  Google Scholar 

  • Ghirardo, A., Koch, K., Taipale, R., Zimmer, I., Schnitzler J.P., and Rinne J. 2010. Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO(2) labelling and PTR-MS analysis. Plant Cell Environ. 33:781–792.

    PubMed  CAS  Google Scholar 

  • Glinwood, R.T. and Pettersson. J. 2000a. Change in response of Rhopalosiphum padi spring migrants to the repellent winter host component methyl salicylate. Entomol. Exp. Appl. 94:325–330.

    Article  CAS  Google Scholar 

  • Glinwood R and Pettersson J. 2000b. Movement by mating females of a host alternating aphid: a response to leaf fall. Oikos 90:43–49.

    Article  Google Scholar 

  • Hakola, H., Laurila. T., Lindfors. V., Hellen, H., Gaman, A., and Rinne, J. 2001. Variation of the VOC emission rates of birch species during the growing season. Boreal Environ. Res. 6:237–249.

    CAS  Google Scholar 

  • Hamilton, J.F., Lewis, A.C., Carey, T.J., Wenger, J.C., Garcia, E.B.I., and Munoz, A. 2009. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles. Atmos. Chem. Phys. 9:3815–3823.

    Article  CAS  Google Scholar 

  • Hamilton, W.D. and Brown, S.P. 2001. Autumn tree colours as a handicap signal. Proc. Royal Soc. London. Series B, Biol. Sci. 268:1489–1493.

    Article  CAS  Google Scholar 

  • Holopainen, J.K. 2008. Importance of olfactory and visual signals of autumn leaves in the coevolution of aphids and trees. BioEssays 30:889–896.

    Article  PubMed  Google Scholar 

  • Holopainen, J.K. and Gershenzon, J. 2010. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci.15:176–184.

    Article  PubMed  CAS  Google Scholar 

  • Holopainen, J.K., Kainulainen, E., Oksanen, J., Wulff, A., and Kärenlampi, L. 1991. Effect of exposure to fluoride, nitrogen compounds and SO2 on the numbers of Spruce shoot aphids on Norway spruce seedlings. Oecologia 86:51–56.

    Article  Google Scholar 

  • Holopainen, J.K. and Peltonen, P. 2002. Bright autumn colours of deciduous trees attract aphids: nutrient retranslocation hypothesis. Oikos 99:184–188.

    Article  Google Scholar 

  • Holopainen, J.K., Semiz, G., and Blande, J.D. 2009. Life-history strategies affect aphid preference for yellowing leaves. Biol. Lett. 5:603–605.

    Article  PubMed  Google Scholar 

  • Ibrahim, M.A., Mäenpää, M., Hassinen, V., Kontunen-Soppela, S., Malec, L., Rousi, M., Pietikäinen, L., Tervahauta, A., Kärenlampi, S., Holopainen, J.K. et al. 2010. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. J. Exp. Bot. 61:1583–1595.

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim, M.A., Stewart-Jones, A., Pulkkinen, J., Poppy, G.M., and Holopainen, J.K. 2008. The influence of different nutrient levels on insect-induced plant volatiles in Bt and non-Bt oilseed rape plants. Plant Biol. 10: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Isidorov, V.A., Smolewska, M. Purzynska-Pugacewicz, A., and Tyszkiewicz, Z. 2010. Chemical composition of volatile and extractive compounds of pine and spruce leaf litter in the initial stages of decomposition. Biogeosciences Discuss. 7:1727–1750.

    Article  Google Scholar 

  • Kainulainen, P. and Holopainen, J.K. 2002. Concentrations of secondary compounds in Scots pine needles at different stages of decomposition. Soil Biol. Biochem. 34:37–42.

    Article  CAS  Google Scholar 

  • Karl, T., Fall, R., Crutzen, P. J., Jordan, A., and Lindinger,W. 2001. High concentrations of reactive biogenic VOCs at a high altitude site in late autumn, Geophys. Res. Lett. 28:507–510.

    Article  CAS  Google Scholar 

  • Karl, T., Harren, F., Warneke, C., De Gouw, J., Grayless, C., and Fall, R. 2005. Senescing grass crops as regional sources of reactive volatile organic compounds. J. Geophys. Res. Atmos. 110 (D15), Art. No. D15302

  • Karnosky, D.F., Werner, H., Holopainen, T., Percy, K., Oksanen, T., Oksanen, E., Heerdt, C., Fabian, P., Nagy, J., Heilman, W., Cox, R., Nelson, N., and Matyssek, R. 2007. Free-air exposure systems to scale up ozone research to mature trees. Plant Biol. 9:181–190.

    Article  PubMed  CAS  Google Scholar 

  • Kappers, I.F., Aharoni, A., Van Herpen, T.W.J.M., Luckerhof,F L.L.P., Dicke, M., and Bouwmeester, H.J. 2005. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072.

    Article  PubMed  CAS  Google Scholar 

  • Keskitalo, J., Bergquist, G., Gardeström, P., and Jansson S. 2005. A cellular timetable of autumn senescence. Plant Physiol. 139:1635–1648.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, A. and Baldwin, I.T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.

    Article  PubMed  CAS  Google Scholar 

  • Kontunen-Soppela, S., Parviainen, J., Ruhanen, H., Brosche, M., Keinänen, M., Thakur, R.C., Kolehmainen, M., Kangasjärvi, J., Oksanen, E,. Karnosky, D.F., and Vapaavuori E. 2010. Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence. Environ. Poll. 158:959–968.

    Article  CAS  Google Scholar 

  • Loreto, F., Pinelli, P., Manes, F., and Kollist, H. 2004. Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol. 24:361–367

    PubMed  CAS  Google Scholar 

  • Loreto, F. and Schnitzler, J.P. 2010. Abiotic stresses and induced BVOCs. Trends Plant Sci. 15:54–166.

    Article  CAS  Google Scholar 

  • Magel, E., Mayrhofer, S., Muller, A., Zimmer, I., Hampp, R., and Schnitzler, J.P. 2006. Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves. Atmos. Environ. 40:S138–S151.

    Article  CAS  Google Scholar 

  • Mäntylä, E., Alessio, G.A., Blande, J.D., Heijari, J., Holopainen, J.K., Laaksonen, T., Piirtola, P., and Klemola T. 2008. From plants to birds: higher avian predation rates in trees responding to insect herbivory. Plos One 3:e2832

    Article  PubMed  CAS  Google Scholar 

  • Noe, S.M., Ciccioli, P., Brancaleoni, E., Loreto, F., and Niinemets, U. 2006. Emissions of monoterpenes linalool and ocimene respond differently to environmental changes due to differences in physico-chemical characteristics. Atmos. Environ. 40:4649–4662.

    Article  CAS  Google Scholar 

  • Ougham, H.J., Morris, P., and Thomas, H. 2005. The colours of autumn leaves as symptoms of cellular recycling and defenses against environmental stresses. Curr. Top. Devel. Biol. 66:135–160.

    Article  CAS  Google Scholar 

  • Pareja, M., Mohib, A., Birkett, M.A., Dufour, S., and R.T. Glinwood. 2009. Multivariate statistics coupled to generalized linear models reveal complex use of chemical cues by a parasitoid. Anim. Behav. 77:901–909.

    Article  Google Scholar 

  • Peltonen, P.A., Vapaavuori, E., Julkunen-Tiitto, R., and Holopainen, J.K. 2006. Effects of elevated carbon dioxide and ozone on aphid oviposition preference and birch bud exudate phenolics. Glob. Change Biol. 12:1670–1679.

    Article  Google Scholar 

  • Penuelas, J. and Llusia, J. 2003. BVOCs: plant defense against climate warming? Trends Plant Sci. 8:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Percy, K.E., Awmack, C.S., Lindroth, R.L., Kubiske, M.E., Kopper, B.J., Isebrands, J.G., Pregitzer, K.S., Hendrey, G.R., Dickson, R.E., Zak, D.R., Oksanen, E., Sober, J., Harrington, R., and Karnosky, D.F. 2002. Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420:403–407.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, D.M., Blande, J.D., Dong, W.X., Nerg, A.M., and Holopainen, J.K. 2007. Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J. Chem. Ecol. 33:683–694.

    Article  PubMed  CAS  Google Scholar 

  • Pope, T.W., Campbell, C.A.M., Hardie, J., Pickett, J.A., and Wadhams, L.J. 2007. Interactions between host-plant volatiles and the sex pheromones of the bird cherry-oat aphid, Rhopalosiphum padi and the damson-hop aphid, Phorodon humuli. J. Chem. Ecol. 33:157–165.

    Article  PubMed  CAS  Google Scholar 

  • Rosenstiel, T.N., Potosnak, M.J., Griffin, K.L., Fall, R., and Monson, R.K. 2003. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259.

    Article  PubMed  CAS  Google Scholar 

  • Schaub, A., Blande, J.D., Graus, M., Oksanen, E., Holopainen, J.K., and Hansel, A. 2010. Real-time monitoring of herbivore induced volatile emissions in the field. Physiol. Plantarum 138:123–133.

    Article  CAS  Google Scholar 

  • Turlings, T.C.J., Tumlinson, J.H., and Lewis, W.J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.

    Article  PubMed  CAS  Google Scholar 

  • Vuorinen, T., Nerg, A.M., Ibrahim, M.A., Reddy, G.V.P., and Holopainen, J.K. 2004. Emission of Plutella xylostella-induced compounds from cabbage grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiol. 135:1984–1992.

    Article  PubMed  CAS  Google Scholar 

  • Vuorinen, T., Nerg, A.M., Syrjälä, L., Peltonen, P., and Holopainen, J.K. 2007. Epirrita autumnata induced VOC emission of Silver birch differ from emission induced by leaf fungal pathogen. Arthropod-Plant Interactions 1:159–165.

    Article  Google Scholar 

  • Vuorinen, T., Nerg, A.-M., Vapaavuori, E., and Holopainen, J.K. 2005. VOC emissions from silver birch (Betula pendula) grown under elevated CO2 and O3 concentrations. Atmos. Environ. 39:1185–1197.

    Article  CAS  Google Scholar 

  • White, T.C.R. 2003. Nutrient retranslocation hypothesis, a subset of the flush feeding/senescence feeding hypothesis. Oikos 103:217.

    Article  Google Scholar 

  • White T.C.R. 2009. Catching a red herring: autumn colours and aphids. Oikos 118:1610–1612.

    Article  Google Scholar 

  • Wilkinson, D.M., Sherratt, T.N., Phillip, D.M., Wratten, S.D., Dixon, A.F.G., and Young, A.J. 2002. The adaptive significance of autumn leaf colours. Oikos 99:402–407.

    Article  Google Scholar 

  • Yamazaki, K. 2008. Autumn leaf colouration: a new hypothesis involving plant ant mutualism via aphids. Naturwissenschaften 95:671–676.

    Article  PubMed  CAS  Google Scholar 

  • Zahavi, A. 1975. Mate selection—a selection for a handicap. J. Theor. Biol. 53:205–214.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.W. and Park, K.C. 2005. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J. Chem. Ecol. 31:1733–1746.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank James Blande and Robert Glinwood for comments on an earlier draft of the manuscript. This study was financially supported by the Academy of Finland (project no. 111543, J.K.H, and J.H., project no. 109933, E.O.), European Commission (ISONET, MRTN-CT-2003-504720, J.K.H) and the European Science Foundation, (VOCBAS programme, G.A.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarmo K. Holopainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holopainen, J.K., Heijari, J., Oksanen, E. et al. Leaf Volatile Emissions of Betula pendula during Autumn Coloration and Leaf Fall. J Chem Ecol 36, 1068–1075 (2010). https://doi.org/10.1007/s10886-010-9857-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9857-4

Key Words

Navigation