Skip to main content
Log in

Partitioning of New Carbon as 11C in Nicotiana tabacum Reveals Insight into Methyl Jasmonate Induced Changes in Metabolism

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We examined the timeline by which methyl jasmonate (MeJA) reprograms new carbon partitioning into key metabolite pools. The radioactive isotope 11C (t1/2 20.4 min), administered to intact leaves of Nicotiana tabacum L. (cv Samsun) as 11CO2 gas enabled us to measure changes in new carbon partitioning into soluble sugar and amino acid pools of [11C]photosynthate. A 500 μM MeJA treatment resulted in a decrease in the [11C]soluble sugar pool and an increase in the [11C]amino acid pool after 4 h. This pattern was more pronounced 15 h after treatment. We also examined the timeline for 11C-partitioning into aromatic amino acid metabolites of the shikimate pathway. [11C]Tyrosine, [11C]phenylalanine and [11C]tryptophan were elevated 1.5-fold, 12-fold and 12-fold, respectively, relative to controls, 4 h after MeJA treatment, while endogeneous pools were unchanged. This suggests that only new carbon is utilized during early stages of defense induction. By 15 h, [11C]tyrosine and [11C]phenylalanine returned to baseline while [11C]tryptophan was elevated 30-fold, suggesting that MeJA exerts selective control over the shikimate pathway. Finally, we measured trans-cinnamic acid levels as a gauge of downstream phenolic metabolism. Levels were unchanged 4 h after MeJA treatment relative to controls, but were increased 2-fold by 15 h, indicating a lag in response of secondary metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnold, T. M., and Schultz, J. C. 2002. Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus. Oecologia 130:585–593.

    Article  Google Scholar 

  • Babst, B. A., Ferrieri, R. A., Gray, D. W., Lerdau, M., Schlyer, D. J., Schueller, M., Thorpe, M. R., and Orians, C. M. 2005. Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytol. 167:63–72.

    Article  PubMed  CAS  Google Scholar 

  • Babst, B. A., Sjödin, A., Jansson, S., and Orians, C. M. 2009. Local and systemic transcriptome responses to herbivory and jasmonic acid in populus. Tree Genetics & Genomes 5:459–474.

    Article  Google Scholar 

  • Baena-González, E. 2010. Energy signaling in the regulation of gene expression during stress. Molecular Plant 3:300–313.

    Article  PubMed  CAS  Google Scholar 

  • Beardmore, T., Wetzel, S., and Kalous, M. 2000. Interactions of airborne methyl jasmonate with vegetative storage protein gene and protein accumulation and biomass partitioning in Populus plants. Can. J. For. Res. 30:1106–1113.

    Article  CAS  Google Scholar 

  • Bickel, H., and Schultz, G. 1979. Shikimate pathway regulation in suspensions of intact spinach chloroplasts. Phytochemistry. 18:498–499.

    Article  CAS  Google Scholar 

  • Bower, N. I., Casu, R. E., Maclean, D. J., Reverter, A., Chapman, S. C., and Manners, J. M. 2005. Transcriptional response of sugarcane roots to methyl jasmonate. Plant Sci. 168:761–772.

    Article  CAS  Google Scholar 

  • Budi-Muljono, R. A., Looman, A. M. G., Verpoorte, R., and Scheffer, J. J. C. 1998. Assay of salicylic acid and related compounds in plant cell cultures by capillary GC. Phytochem. Analysis 9:35–38.

    Article  Google Scholar 

  • Caño-Delgado, A., Penfield, S., Smith, C., Catley, M., and Bevan, M. 2003. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 34:351–362.

    Article  PubMed  Google Scholar 

  • Cheong, Y. H., Chang, H.-S., Gupta, R., Wang, X., Zhu, T., and Luan, S. 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress and hormonal responses in Arabidopsis. Plant Physiol. 129:661–667.

    Article  PubMed  CAS  Google Scholar 

  • Chow, J., Orenberg, J. B., and Nugent, K. D. 1987. Comparison of automatic pre-column and post-column analysis of amino acids oligomers. J. Chromatogr. 386:243–249.

    Article  PubMed  CAS  Google Scholar 

  • Crawly, M. J. 1983. Herbivory: the dynamics of plant-animal interactions. Blackwell Scientific Publications, Oxford, pp 437.

  • Creelman, R. A. and Mullet, J. E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:355–381.

    Article  PubMed  CAS  Google Scholar 

  • Devoto, A., and Turner, J. G. 2005. Jasmonate-regulated Arabidopsis stress signaling network. Physiol. Plant. 123:161–172.

    Article  CAS  Google Scholar 

  • Doerner, P. 2008. Signal and mechanisms in the control of plant growth. Plant Cell Monogr. Series: “Plant Growth Signaling” in L. Bögre, G. Beemster (eds.). Springer-Verlag, Heidelberg, vol.10, pp 1–23.

  • Dyer, W. E., Henstrand, J. M., Handa, A. K., and Herrmann, K. M. 1989. Wounding induces the first enzyme of the shikimate pathway in Solanaceae. Proc. Natl. Acad. Sci. USA 86:7370–7373.

    Article  PubMed  CAS  Google Scholar 

  • Farmer, E. E., Alméras, E., and Krishnamurthy, V. 2003. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol. 6:372–378.

    Article  PubMed  CAS  Google Scholar 

  • Ferrieri, R. A. and Wolf, A. P. 1983. The chemistry of positron-emitting nucleogenic (hot) atoms with regard to the preparation of labeled compounds of practical utility. Radiochim Acta. 34:69–83.

    CAS  Google Scholar 

  • Ferrieri, R. A., Gray, D. W., Babst, B. A., Schueller, M. J., Schlyer, D. J., Thorpe, M. R., Lerdau, M., and Orians, C. M. 2005. Use of carbon-11 in Populus shows that exogenous jasmonic acid increases biosynthesis of isoprene from recently fixed carbon. Plant Cell & Environ. 28:591–602.

    Article  CAS  Google Scholar 

  • Feussner, I., and Wasternack, C. 2002. The lipoxygenase pathway. Annu. Rev. Plant Biol. 53:275–297.

    Article  PubMed  CAS  Google Scholar 

  • Gómez, S., Ferrieri, R. A., Schueller, M., and Orians, C. M. 2010. Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato. New Phytologist. doi:10.1111/j.1469-8137.2010.03414.x

  • He, Y., Fukushige, H., Hildebrand, D. F., and Gan, S. 2002. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 128:876–884.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, K. M., and Weaver, L. M. 1999. The shikimate pathway. Annu Rev. Plant Physiol. Plant Mol. Biol. 50:473–503.

    Article  PubMed  CAS  Google Scholar 

  • Howe, G. A. 2004. Jasmonates as signals in wound response. J. Plant Growth Regul. 23:223–237.

    CAS  Google Scholar 

  • Hudgins, J. W., Christiansen, E., and Franceshi, V. R. 2004. Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: a phylogenetic perspective. Tree Physiol. 24:251–264.

    PubMed  CAS  Google Scholar 

  • Ishikura, N., Teramoto, S., Takeshima, Y. and Mitsui, S. 1986. Effects of glyphosate on the shikimate pathway and regulation of phenylalanine ammonialyase in Cryptomeria and Perilla cell suspension cultures. Plant Cell Physiol. 27:677–684.

    CAS  Google Scholar 

  • Jung, C., Lyou, S. H., Yeu, S. Y., Kim, M. A., Rhee, S., Kim, M., Lee, J. S., Choi, Y. D., and Cheong, J. J. 2007. Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Rep. 26:1053–1063.

    Article  PubMed  CAS  Google Scholar 

  • Kloosterman, H., Hessels, G. I., Vrijbloed, J. W., Euverink, G. J., and Dijkhuizen, L., 2003. (De)regulation of key enzyme steps in the shikimate pathway and phenylalanine-specific pathway of the actinomycete Amycolatopsis methanolica. Microbiol. 149:3321–3330.

    Article  CAS  Google Scholar 

  • Lee, J. E., Vogt, T., Hause, B., and Lobler, M. 1997. Methyl jasmonate induces an O-methyltransferase in barley. Plant Cell Physiol. 38:851–862.

    PubMed  CAS  Google Scholar 

  • Maffei, M. E., Mithöfer, A., and Boland, W. 2007. Before gene expression: early events in plant-insect interaction. Trends Plant Sci. 12:310–316.

    Article  PubMed  CAS  Google Scholar 

  • Malone, L. A., Barraclough, E. I., Lin-Wang, K., Stevenson, D. E., and Allan, A. C. 2009. Effects of red-leaved transgenic tobacco expressing a MYB transcription factor on two herbivourous insects, Spondoptera litura and Helicoverpa armigera. Entomol. Exper. Appl. 133:117–127.

    Article  Google Scholar 

  • Martin, F., Maudinas, B., and Gadal, P. 1982. Separation of o-phthaldialdehyde derivative of free amino acids from plant tissues by isocratic reversed-phase high-performance liquid chromatography. Ann. Bot. 50:401–406.

    CAS  Google Scholar 

  • McNaughton, S. J. 1983. Compensatory plant growth as a response to herbivory. Oikos. 40:329–336.

    Article  Google Scholar 

  • Meuriot, F., Noquet, C., Avice, J. C., Volenec, J. J., Cunningham, S. M., Sors, T. G., Caillot, S., and Ourry, A. 2004. Methyl jasmonate alters N partitioning, N reserves accumulation and induces gene expression of a 32-kDa vegetative storage protein that possesses chitinase activity in Medicago sativa taproots. Physiol. Plant. 120:113–123.

    Article  PubMed  CAS  Google Scholar 

  • Moons, A., Prinsen, E., Bauw, G., and Van Montagu, M. 1997. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259.

    Article  PubMed  CAS  Google Scholar 

  • Naoumkina, M., Farag, M. A., Sumner, L. W., Tang, Y., Liu, C. J., and Dixon, R. A. 2007. Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc. Natl. Acad. Sci. USA 104:17909–17915.

    Article  PubMed  CAS  Google Scholar 

  • Osbourn, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831.

    Article  PubMed  CAS  Google Scholar 

  • Pauwels, L., Morreel, K., Witte, E., Lammertyn, F., Van Montagu, M., Boerjan, W., Inze, D., and Goossens, A. 2008. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc. Natl. Acad. Sci. USA 105:1380–1385.

    Article  PubMed  Google Scholar 

  • Reymond, P., and Farmer, E. E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1:404–411.

    Article  PubMed  CAS  Google Scholar 

  • Rickauer, M., Brodschelm, W., Bottin, A., Véronési, S., Grimal, H., and Esquerré-Tugayé, M. T. 1997. The jasmonate pathway is involved differentially in the regulation of different defence responses in tobacco cells. Planta 202:155–162.

    Article  CAS  Google Scholar 

  • Rosenthal, J. P., and Kotanen, P. M. 1994. Terrestrial plant tolerance to herbivory. Trends in Ecology and Evolution. 9:145–148.

    Article  Google Scholar 

  • Schwachtje, J., and Baldwin, I. T. 2008. Why does herbivore attack reconfigure primary metabolism. Plant Physiol. 146:845–851.

    Article  PubMed  CAS  Google Scholar 

  • Seltmann, M. A., Stingl, N. E., Lautenschlaeger, J. K., Krischke, M., Mueller, M. J., and Berger, S. 2010. Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis thaliana. Plant Physiol. 152:1940–1950.

    Article  PubMed  CAS  Google Scholar 

  • Sembdner, G., and Parthier, B. 1993. The biochemistry and physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:569–589.

    Article  CAS  Google Scholar 

  • Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K., and Weisshaar, B. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 50:660–677.

    Article  PubMed  CAS  Google Scholar 

  • Stratmann, J. W. 2003. Long distance run in the wound response—jasmonic acid is pulling ahead. Trends Plant Sci. 8:247–250.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, S. Y., and Agrawal, A. A. 1999. The ecology and evolution of plant tolerance to herbivory. Trends Ecol. Evol. 14:179–185.

    Article  PubMed  Google Scholar 

  • Thorpe, M. R., Ferrieri, A. P., Herth, M. H., and Ferrieri, R. A. 2007. 11C-Imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photassimilate even after proton transport is decoupled. Planta 226:541–551.

    Article  PubMed  CAS  Google Scholar 

  • Truman, W., Bennett, M. H., Kubigsteltig, I., Turnbull, C., and Grant, M. 2007. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc. Natl. Acad. Sci. USA 104:1075–1080.

    Article  PubMed  CAS  Google Scholar 

  • Van Kleunen, M., Ramponi, G., and Schmid, B. 2004. Effects of herbivory by clipping and jasmonic acid on Solidago Canadensis. Basic Appl. Ecol. 5:173–181.

    Article  Google Scholar 

  • Wasternack, C. 2007. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100:681–697.

    Article  PubMed  CAS  Google Scholar 

  • Wasternack, C., and Parthier, B. 1997. Jasmonate-signaled plant gene expression. Trends Plant Sci. 2:302–307.

    Article  Google Scholar 

  • Weber, H. 2002. Fatty acid derived signals in plants. Trends Plant Sci. 7:214–224.

    Article  Google Scholar 

  • Wu, J. Q., Hettenhausen, C., Meldau, S., and Baldwin, I. T. 2007. Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–1122.

    Article  PubMed  CAS  Google Scholar 

  • Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M., and Turner, J. G. 1998. COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094.

    Article  PubMed  CAS  Google Scholar 

  • Zangerl, A. R. 2003. Evolution of induced plant responses to herbivores. Basic Appl. Ecol. 4:91–103.

    Article  Google Scholar 

  • Zangerl, A. R., Arntz, A. M., and Berenbaum, M. R. 1997. Physiological price of an induced chemical defense: photosynthesis, respiration, biosynthesis, and growth. Oecologia 109:433–441.

    Article  Google Scholar 

  • Zhang, Z. P., and Baldwin, I. T. 1997. Transport of 2-C-14 jasmonic acid from leaves to roots mimic wound-induced changes in endogenous jasmonic acid pools in Nicotiana sylvestris. Planta 203:436–441.

    Article  CAS  Google Scholar 

  • Zhao, J., Davis, L. C., and Verpoorte, R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv. 23:283–333.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the U.S. Department of Energy, Office of Biological and Environmental Research under contract DE–AC02–98CH10886, in part by the National Research Initiative of the USDA National Institute of Food and Agriculture, under grant 2007-35302-18351, and by German Academic Exchange Service (Deutscher Akademischer Austauschdienst = DAAD), Bonn, which supported N. Hanik and M. Best.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Ferrieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanik, N., Gómez, S., Best, M. et al. Partitioning of New Carbon as 11C in Nicotiana tabacum Reveals Insight into Methyl Jasmonate Induced Changes in Metabolism. J Chem Ecol 36, 1058–1067 (2010). https://doi.org/10.1007/s10886-010-9835-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9835-x

Key Words

Navigation