Skip to main content
Log in

Bidens pilosa L. Exhibits High Sensitivity to Coumarin in Comparison with Three Other Weed Species

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Nine natural plant compounds were screened for phytotoxicity to Bidens pilosa L. a troublesome weed in field and plantation crops. The sensitivity of three other weed species to coumarin, the most active identified compound, was also evaluated. Coumarin, at a concentration of 500 μM, had little effect on germination and growth of Senna obtusifolia L., Euphorbia heterophylla L., and Ipomoea grandifolia L. when compared with its effects on B. pilosa L. In a concentration range of 10–100 μM, coumarin caused a dose-dependent inhibition of germination and growth of B. pilosa L. The measurements of some parameters of energy metabolism revealed that coumarin-treated root tissues exhibited characteristics of seedlings in an earlier stage of growth, including higher respiratory activity and higher activities of alcohol dehydrogenase and lipoxygenase. These results suggest that coumarin inhibition of germination and growth of B. pilosa L. was not a consequence of an impairment of energy metabolism. Rather, it seems to act as a cytostatic agent, retarding germination. At concentrations above 50 μM, coumarin increased lipoxygenase activity and the level of conjugated dienes of root extracts, suggesting that it may induce oxidative stress in seedling roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AOX:

alternative oxidase

COX:

cytochrome oxidase

DTT:

dithiothreitol

EDTA:

ethylene diamide tetracetic acid

KCN:

potassium cyanide

MDA:

malondialdehyde

TBA:

2-thiobarbituric acid

TCA:

trichloroacetic acid

References

  • Abenavoli, M. R., Sorgonã, A., Sidari, M., Badiani, M., and Fuggi, A 2003. Coumarin inhibits the growth of carrot (Daucus carota L. cv. Saint Valery) cells in suspension culture. J. Plant Physiol. 160:227–237.

    Article  PubMed  CAS  Google Scholar 

  • Abenavoli, M. R., Sorgonà, A., Sidari, M., Albano, A., and Cacco, G. 2004. Coumarin differentially affects the morphology of different root types of maize seedlings. J. Chem. Ecol. 30:1871–1883.

    Article  PubMed  CAS  Google Scholar 

  • Abenavoli, M. R., Cacco, G., Sorgonà, A., Marabottini, R., Paolacci, A. R., Ciaffi, M., and Badiani, M. 2006. The inhibitory effect of coumarin on the germination of durum wheat (Triticum turgidum ssp. durum, CV. SIMETO) seeds. J. Chem. Ecol. 32:489–506.

    Article  PubMed  CAS  Google Scholar 

  • Beuge, J. A., and Aust, S. D. 1978. Microsomal lipid peroxidation. Method. Enzymol. 52:302–310.

    Google Scholar 

  • Blokhina, O., Virolainen, E., and Fagersted, V. K. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91:179–194.

    Article  PubMed  CAS  Google Scholar 

  • Boveris, A., Cadenas, E., and Chance, B. 1980. Low level chemiluminescence of the lipoxygenase reaction. Photobiochem. Photobiophys. 1:175–182.

    CAS  Google Scholar 

  • Chon, S. U., and Kim, Y. M. 2004. Herbicidal potential and quantification of suspected allelochemicals from four grass crop extracts. J. Agron. Crop Sci. 190:145–150.

    Article  CAS  Google Scholar 

  • Chon, S. U., Kim, Y. M., and Lee, J. C. 2003. Herbicidal potencial and quantification of causative allelochemicals from several Compositae weeds. Weed Res. 43:444–450.

    Article  CAS  Google Scholar 

  • Christoffoleti, P. J., and Foloni, L. 1999. Dose-response curves of resistant and susceptible Bidens pilosa to ALS inhibitor herbicide, pp. 159–162, in Proceedings from the Brighton Crop Protection Conference: weeds. November, 1999, London, UK.

  • Dudai, N., Poljakoff-Mayber, A., Mayer, A. M., Putievsky, E., and Lerner, H. R. 1999. Essential oils as allelochemical and their potential use as bioherbicides. J. Chem. Ecol. 25:079–1089.

    Article  Google Scholar 

  • Duke, S. O., Dayan, F. E., omagni, J. G., and imando, A. M. 2000. Natural products as sources of herbicides: current status and future trends. Weed Res. 40:99–111.

    Article  CAS  Google Scholar 

  • Estabrook, R. W. 1967. Mitochondrial respiratory control and polarographic measurements of ADP/O ratio. Method. Enzymol. 10:41–47.

    CAS  Google Scholar 

  • Fischer, N. H., Williamson, G. B., Weidenhamer, J. D., and Richardson 1994. In search of allelopathy in the Florida scrub: the role of terpenoids. J. Chem. Ecol. 20:1355–1379.

    Article  CAS  Google Scholar 

  • Hara, M., Umetsu, N., Miyamoto, C., and Tamari, K. 1973. Inhibition of the biosynthesis of plant cell wall materials, especially cellulose biosynthesis by coumarin. Plant Cell Physiol. 14:11–28.

    CAS  Google Scholar 

  • Heath, R. L., and Packer, L. 1968. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acids peroxidation. Arch. Biochem. Biophys. 125:189–198.

    Article  PubMed  CAS  Google Scholar 

  • Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World’s Worst Weeds: Distribution and Biology. The University Press of Hawaii, Honolulu.

    Google Scholar 

  • Jansson, E., and Svensson, S. B. 1980. Coumarin effects on Glycine max hypocotyls explants. Physiol. Plantarum 48:486–490.

    Article  CAS  Google Scholar 

  • Khanh, T. D., Chung, I. M., Tawata, S., and Xuan, T. D. 2006. Weed suppression by Passiflora edulis and its potential allelochemicals. Weed Res. 46:296–303.

    Article  CAS  Google Scholar 

  • Knypl, J. S. 1964. Coumarin-induced respiration of sunflower. Physiol. Plantarum 17:771–778.

    Article  CAS  Google Scholar 

  • Kohli, R. K., Batish, D. R., and Singh, H. P. 2006. Allelopathic interactions in agroecosystems, pp. 465–493, in M. V. Reigosa, N. Pedrol, and L. González (eds.). Allelopathy: A Physiological Process with Ecological Implications Springer, Netherlands.

    Google Scholar 

  • Kupidlowska, E., Kowalec, M., Sulkowski, G., and Zobel, A. M. 1994. The effects of coumarin on root elongation and ultrastructure of meristematic cell protoplast. Ann. Bot. 73:525–530.

    Article  CAS  Google Scholar 

  • Labouriau, L. G., and Osborn, J. H. 1984. Temperature dependence of the germination of tomato seeds. J. Therm. Biol. 9:285–294.

    Article  Google Scholar 

  • Larkin, P. J. 1987. Calmodulin levels are not responsible for aluminum tolerance in wheat. Aust. J. Plant Physiol. 14:377–387.

    Article  CAS  Google Scholar 

  • Lee, C. Y. 1982. Alcohol dehydrogenase from Drosophila melanogaster. Method. Enzymol. 89:445–450.

    CAS  Google Scholar 

  • Macías, F. 1995. Allelopathy in the search for natural herbicide models, pp. 310–329, in Inderjit, M. M. Dakshini, and F. A. Einhellig (eds.). Allelopathy: Organisms, Processes, and Applications American Chemical Society, Washington DC.

    Google Scholar 

  • Macías, F., Galindo, J. C. G., Massanet, G. M., Rodriguez-Luís, F., and Zubías, E. 1993. Allelochemicals from Pilocarpus goudotianus leaves. J. Chem. Ecol. 19:1371–1379.

    Article  Google Scholar 

  • Moreland, E. D., and Novitzky, W. P. 1987. Effects of coumarins and flavonoids on isolated chloroplast and mitochondria, pp. 247–261, in G. R. Waller (ed.). Allelochemicals: Role in Agriculture and ForestryAmerican Society Series. Americal Chemical Society, Washington, DC.

    Google Scholar 

  • Murray, R. D. H., Méndez, J., and Brown, S. A. 1982. The Natural Coumarins: Occurrence, Chemistry and Biochemistry. J. Wiley and Sons, Chichester.

    Google Scholar 

  • Muscari, C. L., Frascaro, M., Guarnieri, C., and Caldarera, C. I. M. 1990. Mitochondrial function and superoxide generation from submitochondrial particles of aged rat hearts. Biochim. Biophys. Acta 1015:200–204.

    Article  PubMed  CAS  Google Scholar 

  • Podbiekowska, M., Kupidlowska, E., Waleza, M., Dobrzynska, K., Louis, S. A., Keightley, A., and Zobel, A. M. 1994. Coumarin as antimitotics. Int. J. Pharm. 32:262–273.

    Google Scholar 

  • Porta, H., and Rocha-Sosa, M. 2002. Plant lipoxygenases. Physiological and Molecular Features. Plant Physiol. 130:15–21.

    Article  PubMed  CAS  Google Scholar 

  • Putnam, A. R., and Duke, W. B. 1974. Biological suppression of weeds: evidence for allelopathy in accessions of cucumber. Science 185:370–372.

    Article  PubMed  Google Scholar 

  • Reigosa, M. J., and Pazos-Malvido, E. 2007. Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J. Chem Ecol. 33:1456–1466.

    Article  PubMed  CAS  Google Scholar 

  • Reigosa, M. J., Souto, X. C., and González, L. 1999. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Reg. 28:83–88.

    Article  CAS  Google Scholar 

  • Richard, H., Goodwin, A. E., and Taves, C. 1950. The effect of coumarin derivatives on the growth of Avena roots. Amer. J. Bot. 37:224–231.

    Article  Google Scholar 

  • Siedow, J. N. 1991. Plant lipoxygenase: structure and function. Annu. Rev. Plant Physiol. 42:145–188.

    Article  CAS  Google Scholar 

  • Siedow, J. N., and Girvin, M. E. 1980. Alternative respiratory pathway. Plant Physiol. 65:669–674.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, S. B. 1972. The effect of coumarin on growth, production of dry matter, protein and nucleic acids in roots of maize and wheat and the interactions of coumarin with metabolic inhibitors. Physiol. Plantarum 27:13–24.

    CAS  Google Scholar 

  • Van Sumere, C. F., Cottenie, J., De Greef, J., and Kint, J. 1972. Biochemical studies in relation to the possible germination regulatory role of naturally occurring coumarin and phenolic. Recent Adv. Phytochemistry 4:165–221.

    CAS  Google Scholar 

  • Vaughn, S. F., and Spencer, G. F. 1993. Volatile monoterpenes as potential parent structures for new herbicides. Weed Sci. 41:114–119.

    CAS  Google Scholar 

  • Vyvyan, J. R. 2002. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58:1631–1646.

    Article  CAS  Google Scholar 

  • Yakushkina, N. I., and Starikova, V. T. 1978. Effects of coumarin and gibberellin on certain aspects of the energy metabolism of corn seedlings. Fiziol. Rast. 24:1211–1216.

    Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D., and Haig, T. 1999. Crop cultivars with allelopathic capability. Weed Res. 39:171–180.

    Article  Google Scholar 

  • Zobel, A. M., and Brown, S. A. 1995. Coumarins in the interactions between the plant and its environment. Allelopathy J. 2:9–20.

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Fundação Araucária do Estado do Paraná and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Érica Marusa Pergo fellowship holder from the Conselho Nacional de Desenvolvimento Científico e Tecnológico. We are indebted to Dr. Adelar Bracht for suggestions on the revision of the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emy Luiza Ishii-Iwamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pergo, É.M., Abrahim, D., Soares da Silva, P.C. et al. Bidens pilosa L. Exhibits High Sensitivity to Coumarin in Comparison with Three Other Weed Species. J Chem Ecol 34, 499–507 (2008). https://doi.org/10.1007/s10886-008-9449-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9449-8

Keywords

Navigation