Skip to main content
Log in

The Desert Locust, Schistocerca gregaria, Detoxifies the Glucosinolates of Schouwia purpurea by Desulfation

Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Desert locusts (Schistocerca gregaria) occasionally feed on Schouwia purpurea, a plant that contains tenfold higher levels of glucosinolates than most other Brassicaceae. Whereas this unusually high level of glucosinolates is expected to be toxic and/or deterrent to most insects, locusts feed on the plant with no apparent ill effects. In this paper, we demonstrate that the desert locust, like larvae of the diamondback moth (Plutella xylostella), possesses a glucosinolate sulfatase in the gut that hydrolyzes glucosinolates to their corresponding desulfonated forms. These are no longer susceptible to cleavage by myrosinase, thus eliminating the formation of toxic glucosinolate hydrolysis products. Sulfatase is found throughout the desert locust gut and can catalyze the hydrolysis of all of the glucosinolates present in S. purpurea. The enzyme was detected in all larval stages of locusts as well as in both male and female adults feeding on this plant species. Glucosinolate sulfatase activity is induced tenfold when locusts are fed S. purpurea after being maintained on a glucosinolate-free diet, and activity declines when glucosinolates are removed from the locust diet. A detoxification system that is sensitive to the dietary levels of a plant toxin may minimize the physiological costs of toxin processing, especially for a generalist insect herbivore that encounters large variations in plant defense metabolites while feeding on different species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brown, P. D., Tokuhisa, J. G., Reichelt, M., and Gershenzon, J. 2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481.

    Article  PubMed  CAS  Google Scholar 

  • Burow, M., Markert, J., Gershenzon, J., and Wittstock, U. 2006. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. FEBS J. 273:2432–2446.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M. B., Schuler, M. A., and Berenbaum, M. R. 1992. A host-inducible cytochrome P-450 from a host-specific caterpillar: molecular cloning and evolution. Proc. Natl. Acad. Sci. U. S. A. 89:10920–10924.

    Article  PubMed  CAS  Google Scholar 

  • Culmsee, H. 2002. The habitat functions of vegetation in relation to the behaviour of the desert locust Schistocerca gregaria (Forskål)(Acrididae: Orthoptera)—a study in Mauritania (West Africa). Phytocoenologia 32:645–664.

    Article  Google Scholar 

  • Dugravot, S., Thibout, E., Abo-Ghalia, A., and Huignard, J. 2004. How a specialist and a non-specialist insect cope with dimethyl disulfide produced by Allium porrum. Entomol. Exp. Appl. 133:173–179.

    Article  Google Scholar 

  • El Sayed, G., Louveaux, A., Mavratzotis, M., Rollin, P., and Quinsac, A. 1996. Effects of glucobrassicin, epiprogoitrin and related breakdown products on locust feeding: Schouwia purpurea and desert locust relationships. Entomol. Exp. Appl. 78:231–236.

    Article  Google Scholar 

  • Fahey, J. W., Zalcmann, A. T., and Talalay, P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among higher plants. Phytochemistry 56:5–51.

    Article  PubMed  CAS  Google Scholar 

  • Francis, F., Lognay, G., Wathelet, J.-P., and Haubruge, E. 2002. Characterisation of aphid myrosinase and degradation studies of glucosinolates. Arch. Insect Biochem. Physiol. 50:173–182.

    Article  PubMed  CAS  Google Scholar 

  • Francis, F., Vanhaelen, N., and Haubruge, E. 2005. Glutathione-S-transferase in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch. Insect Biochem. Physiol. 58:166–174.

    Article  PubMed  CAS  Google Scholar 

  • Ghaout, S., Louveaux, A., Mainguet, A. M., Deschamps, M., and Rahal, Y. 1991. What defense does Schouwia purpurea (Cruciferae) have against the desert locust? Secondary compounds and nutritive value. J. Chem. Ecol. 17:1499–1515.

    Article  CAS  Google Scholar 

  • Halkier, B. A. and Gershenzon, J. 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57:303–333.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, S. R., Best, M. D., and Wong, C.-H. 2004. Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chemie Int. 43:5736–5763

    Article  CAS  Google Scholar 

  • Husebye, H., Arzt, S., Burmeister, W. P., Haertel, F. V., Brandt, A., Rossiter, J. T., and Bones, A. M. 2005. Crystal structure at 1.1 Å resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to β-glucosidases. Insect Biochem. Mol. Biol. 35:1311–1320.

    Article  PubMed  CAS  Google Scholar 

  • Koolman, J. 1973. Sulphate esters as inactivation products of ecdysone in Locusta migratoria. Hoppe-Seyler’s Z. Physiol. Chem. 354:1043–1048.

    PubMed  CAS  Google Scholar 

  • Lambrix, V., Reichelt, M., Mitchell-Olds, T., Kliebenstein, D. J., and Gershenzon, J. 2001. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichloplusia ni herbivory. Plant Cell 13:2793–2807.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Berenbaum, M. R., and Schuler, M. A. 2001. Molecular analysis of multiple CYP6B genes from polyphagous Papilio species. Insect Biochem. Mol. Biol. 31:999–1011.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Baudry, J., Berenbaum, M. R., and Schuler, M. A. 2004a. Structural and functional divergence of insect CYP6B proteins: From specialist to generalist cytochrome P450. Proc. Natl. Acad. Sci. U. S. A. 101:2939–2944.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Zangerl, A. R., Schuler, M. A., and Berenbaum, M. A. 2004b. Characterization and evolution of furanocoumarin-inducible cytochrome P450s in the parsnip webworm, Depressaria pastinacella. Insect Mol. Biol. 13:603–613.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Schuler, M. A., and Berenbaum, M. A. 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52:231–253.

    Article  PubMed  Google Scholar 

  • Mainguet, A. M., Louveaux, A., El Sayed, G., and Rollin, P. 2000. Ability of a generalist insect, Schistocerca gregaria, to overcome thioglucoside defense in desert plants: tolerance or adaptation? Entomol. Exp. Appl. 94:309–317.

    Article  CAS  Google Scholar 

  • Matile, P. 1980. The mustard oil bomb: compartmentation of the myrosinase. Biochem. Physiol. Pflanz. 175:722–731.

    CAS  Google Scholar 

  • Mcdonnell, C. M., Brown, R. P., Berenbaum, M., and Schuler, M. A. 2004. Conserved regulatory elements in the promoters of two allelochemical-inducible cytochrome P450 genes differentially regulate transcription. Insect Biochem. Mol. Biol. 34:1129–1139.

    Article  PubMed  CAS  Google Scholar 

  • Pellicia, J. G., Freshler, A., Ladd, C., and Richards, S. 1987. There are two distinct arylsulfatase activities in Drosophila. Biochem. Genet. 25:459–465.

    Article  Google Scholar 

  • Ratzka, A., Vogel, H., Kliebenstein, D. J., Mitchell-Olds, T., and Kroymann, J. 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. U. S. A. 99:11223–11228.

    Article  PubMed  CAS  Google Scholar 

  • Reichelt, M., Brown, P. D., Schneider, B., Oldham, N. J., Stauber, E., Tokuhisa, J., Kliebenstein, D. J., Mitchell-Olds, T., and Gershenzon, J. 2002. Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59:663–671.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, D., Smith, J. N., and Williams, R. T. 1953. Studies in detoxication. 45. β-glucuronidase and arylsulphatase in the crop fluid of locusts. Biochem. J. 53:125–129.

    PubMed  CAS  Google Scholar 

  • Schoonhoven, L. M., Van Loon, J. J. A., and Dicke, M. 2005. Plants as insect food: not the ideal, pp 99–134, in L. M. Schoonhoven, J. J. A. van Loon, M. Dicke (eds.). Insect-Plant Biology. Oxford Press, Oxford.

    Google Scholar 

  • Seidelmann, K., Warnstorff, K., and Ferenz, H.-J. 2005. Phenylacetonitrile is a male specific repellent in gregarious desert locusts, Schistocerca gregaria. Chemoecology 15:37–43.

    Article  CAS  Google Scholar 

  • Snyder, M. J. and Glendinning, J. I. 1996. Causal connection between detoxification enzyme activity and consumption of a toxic plant compound. J. Comp. Physiol. A 179:255–261.

    Article  PubMed  CAS  Google Scholar 

  • Wadleigh, R. W. and Yu, S. J. 1988. Detoxification of isothiocyanate allelochemicals by glutathione transferase in three lepidopterous species. J. Chem. Ecol. 14:1279–1288.

    Article  CAS  Google Scholar 

  • Wathelet, J.-P., Iori, R., Leoni, O., Rollin, P., Mabon, N., Marlier, M., and Palmieri, S. 2001. A recombinant β-O-glucosidase from Caldocellum saccharolyticum to hydrolyse desulfo-glucosinolates. Biotechnol. Lett. 23:443–446.

    Article  CAS  Google Scholar 

  • Wittstock, U., Kliebenstein, D., Lambrix, V., Reichelt, M., and Gershenzon, J. 2003. Glucosinolate hydrolysis and its impact on generalist and specialist herbivores, pp. 101–125, in J. T. Romeo (ed.). Recent Advances in Phytochemistry-Integrative Phytochemistry. From Ethnobotany to Molecular Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Wittstock, U., Agerbirk, N., Stauber, E. J., Olsen, C. E., Hippler, M., Mitchell-Olds, T., Gershenzon, J., and Vogel, H. 2004. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl. Acad. Sci. U. S. A. 101:4859–4864.

    Article  PubMed  CAS  Google Scholar 

  • Yang, R. S. H., Pelliccia, J. G., and Wilkinson, C. F. 1973. Age-dependent arylsulphatase and sulfotransferase activities in the Southern armyworm: a possible insect endocrine regulatory mechanism? Biochem. J. 136:817–820.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Kolm, R. H., Mannervik, B., and Talalay, P. 1995. Reversible conjugation of isothiocyanates with glutathione catalyzed by human glutathione transferases. Biochem. Biophys. Res. Comm. 206:748–755.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Karsten Seidelmann and Sigi Hertel for providing us with S. gregaria, Mohamed Lemine for the gift of S. purpurea seeds, Tamara Krügel and Andreas Weber for growing the plants, and Michael Reichelt for substrate preparation and maintenance of the HPLCs and GCs, as well as for helpful discussions. The Max Planck Society provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Gershenzon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falk, K.L., Gershenzon, J. The Desert Locust, Schistocerca gregaria, Detoxifies the Glucosinolates of Schouwia purpurea by Desulfation. J Chem Ecol 33, 1542–1555 (2007). https://doi.org/10.1007/s10886-007-9331-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9331-0

Keywords

Navigation