Skip to main content
Log in

Blow Up for Klein–Gordon Equation with Nonlocal Operator and Trudinger–Moser Nonlinearity

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we prove a blow up result for a class of nonlocal scalar Klein–Gordon equation. We assume that the nonlinearity has critical exponential growth. Additionally, we prove that the ground state solution of the elliptic problem associated to the original problem is unstable. The strategy is to adapt the recent ideas of Carrião et al. (J Dyn Differ Equ 2023. https://doi.org/10.1007/s10884-023-10281-3) to find two regions (stable and unstable regions). Since the one dimensional case combined with the 1/2 Laplacian operator cause lack of the control on the \(L^2(\mathbb {R})\) norm of \((-\Delta )^{\frac{1}{4}}u\), new delicate calculations are necessary. We prove also that there exists a subset of \(H^{\frac{1}{2}}(\mathbb {R})\times L^2(\mathbb {R})\) such that the solution is global when the initial data is taken into this set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The manuscript has no associated data.

References

  1. Alves, C.O., Cavalcanti, M.M.: On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source. Calc. Var. 34, 377–411 (2009)

    Article  MathSciNet  Google Scholar 

  2. Alves, C.O., Cavalcanti, M.M., Domingos Cavalcanti, V.N., Rammaha, M.A., Toundykov, D.: On existence, uniform decay and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete Contin. Dyn. Syst. Ser. S. 2(3), 583–608 (2009)

    MathSciNet  Google Scholar 

  3. Alves, C.O., Torres Ledesma, C.: Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Commun. Pure Appl. Anal. 20(5), 2065–2100 (2021)

    Article  MathSciNet  Google Scholar 

  4. Bisci, G.M., Radulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, vol. 162. Cambridge University Press, London (2016)

    Book  Google Scholar 

  5. Carrião, P.C., Lehrer, R., Vicente, A.: Unstable ground state and blow up result of Nonlocal Klein–Gordon equations. J. Dyn. Differ. Equ. (2023). https://doi.org/10.1007/s10884-023-10281-3

    Article  MathSciNet  Google Scholar 

  6. Chueshov, I., Eller, M., Lasiecka, I.: On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun. Partial Differ. Equ. 27(9–10), 1901–1951 (2002)

    Article  MathSciNet  Google Scholar 

  7. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  8. Domingos Cavalcanti, V.N., Cavalcanti, M.M., Marchiori, T.D., Webler, C.M.: Asymptotic behaviour of the energy to the viscoelastic wave equation with localized hereditary memory and supercritical source term. J. Dyn. Differ. Equ. 1, 1–51 (2022)

    Google Scholar 

  9. Ferrari, F., Verbitsky, I.E.: Radial fractional Laplace operators and Hessian inequalities. J. Differ. Equ. 253, 244–272 (2012)

    Article  MathSciNet  Google Scholar 

  10. Gazzola, F., Squassina, M.: Global solutions and finite time blow up for damped semilinear wave equations. Ann. I. H. Poincaré 23, 185–207 (2006)

    Article  MathSciNet  Google Scholar 

  11. Georgiev, V., Todorova, G.: Existence of a solution of the wave equation with nonlinear damping and source terms. J. Differ. Equ. 109, 295–308 (1994)

    Article  MathSciNet  Google Scholar 

  12. Iannizzotto, A., Squassina, M.: 1/2-Laplacian problems with exponential nonlinearity. J. Math. Anal. Appl. 414, 372–385 (2014)

    Article  MathSciNet  Google Scholar 

  13. Jeanjean, L., Le Coz, S.: Instability for standing waves of nonlinear Klein–Gordon equations via mountain-pass arguments. Trans. Am. Math. Soc. 361(10), 5401–5416 (2009)

    Article  MathSciNet  Google Scholar 

  14. Levine, H.A., Todorova, G.: Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy. Proc. Am. Math. Soc. 129(3), 793–805 (2000)

    Article  MathSciNet  Google Scholar 

  15. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc. Var. 59, 143 (2020)

    Article  Google Scholar 

  16. Merle, F., Zaag, H.: Determination of the blow-up rate for the semilinear wave equation. Am. J. Math. 125(5), 1147–1164 (2003)

    Article  MathSciNet  Google Scholar 

  17. Messaoudi, S.A.: Blow up and global existence in a nonlinear viscoelastic wave equation. Math. Nachr. 260, 58–66 (2003)

    Article  MathSciNet  Google Scholar 

  18. Marcos do Ó, J., Miyagaki, O.H., Squassina, M.: Ground state of nonlocal scalar field equations with Trudinger–Moser critical nonlinearity. Topol. Methods Nonlinear Anal. 48(2), 477–492 (2016)

    MathSciNet  Google Scholar 

  19. Ohta, M., Todorova, G.: Strong instability of standing waves for nonlinear Klein–Gordon equation and Klein–Gordon–Zakharov system. SIAM J. Math. Anal. 38, 1912–1931 (2007)

    Article  MathSciNet  Google Scholar 

  20. Ozawa, T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127, 259–269 (1995)

    Article  MathSciNet  Google Scholar 

  21. Ros-Oton, X., Serra, J.: The Pohozaev identity for the fractional laplacian. Arch. Ration. Mech. Anal. 213, 587–628 (2014)

    Article  MathSciNet  Google Scholar 

  22. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)

    Article  MathSciNet  Google Scholar 

  23. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33(5), 2105–2137 (2013)

    Article  MathSciNet  Google Scholar 

  24. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)

    Article  MathSciNet  Google Scholar 

  25. Shatah, J.: Unstable ground state of nonlinear Klein–Gordon equations. Trans. Am. Math. Soc. 290(2), 701–710 (1985)

    Article  MathSciNet  Google Scholar 

  26. Takahashi, F.: Critical and subcritical fractional Trudinger–Moser-type inequality on \(\mathbb{R} \). Adv. Nonlinear Anal. 8, 868–884 (2019)

    Article  MathSciNet  Google Scholar 

  27. Todorova, G.: Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms. J. Math. Anal. Appl. 239, 213–226 (1999)

    Article  MathSciNet  Google Scholar 

  28. Yang, H., Han, Y.: Blow-up for a damped p-Laplacian type wave equation with logarithmic nonlinearity. J. Differ. Equ. 306, 569–589 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Research of O. H. Miyagaki is partially supported by the CNPq Grant 303256/2022-2. Research of A. Vicente is partially supported by the CNPq Grant 306771/2023-3.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to André Vicente.

Ethics declarations

Conflict of interest

The authors do not have conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrião, P.C., Miyagaki, O.H. & Vicente, A. Blow Up for Klein–Gordon Equation with Nonlocal Operator and Trudinger–Moser Nonlinearity. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-024-10366-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-024-10366-7

Keywords

Mathematics Subject Classification

Navigation