Skip to main content
Log in

Instability of \(H^1\)-stable Periodic Peakons for the \(\mu \)-Camassa-Holm Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

By applying the method of characteristics, we prove that the periodic peakons of the \(\mu \)-Camassa-Holm (\(\mu \)CH) equation are unstable under \(W^{1,\infty }\)-perturbations. Also, we show that small initial \(W^{1,\infty }\)-perturbations of the above periodic peakons can lead to the finite time blow-up in the nonlinear evolution of the \(\mu \)CH equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Khesin, B., Lenells, J., MisioŁek, G.: Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms. Math. Ann. 342, 617–656 (2008)

    Article  MathSciNet  Google Scholar 

  2. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  3. Fokas, A., Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  4. Hunter, J., Saxton, R.: Dynamics of director fields. SIAM J. Appl. Math. 51, 1498–1521 (1991)

    Article  MathSciNet  Google Scholar 

  5. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  6. Constantin, A., Mckean, H.: A shallow water equation on the circle. Comm. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  7. Hunter, J., Zheng, Y.: On a completely integrable nonlinear hyperbolic variational equation. Physica D 79, 361–386 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  8. Lenells, J., MisioŁek, G., Tiǧlay, F.: Integrable evolution equations on spaces of tensor densities and their peakon solutions. Commun. Math. Phys. 299(1), 129–161 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  9. Khesin, B., MisioŁek, G.: Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. 176, 116–144 (2003)

    Article  MathSciNet  Google Scholar 

  10. Kouranbaeva, S.: The Camassa-Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40, 857–868 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  11. MisioŁek, G.: A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 24, 203–208 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  12. Constantin, A.: On the blow-up of solutions of a periodic shallow water equation. J. Non. Sci. 10, 391–399 (2000)

    Article  MathSciNet  Google Scholar 

  13. Constantin, A.: On the Cauchy problem for the periodic Camassa-Holm equation. J. Differ. Equ. 141, 218–235 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  14. Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233, 75–91 (2000)

    Article  MathSciNet  Google Scholar 

  15. Constantin, A., Strauss, W.: Stability of peakons. Comm. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  Google Scholar 

  16. Constantin, A., Molinet, L.: Orbital stability of solitary waves for a shallow water equation. Physica D 157, 75–89 (2001)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  17. Lenells, J.: Stability of periodic peakons. Int. Math. Res. Not. 10, 485–499 (2004)

    Article  MathSciNet  Google Scholar 

  18. Lenells, J.: A variational approach to the stability of periodic peakons. J. Nonlinear Math. Phys. 11, 151–163 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  19. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa-Holm equation. Arch. Ration. Mech. Anal. 183(2), 215–239 (2007)

    Article  MathSciNet  Google Scholar 

  20. Holden, H., Raynaud, X.: Periodic conservative solutions of the Camassa-Holm equation. Ann. Inst. Fourier (Grenoble) 58(3), 945–988 (2008)

    Article  MathSciNet  Google Scholar 

  21. Chen, M., Lenells, J., Liu, Y.: Stability of the \(\mu \)-Camassa-Holm peakons. J. Nonlinear Sci. 23, 97–112 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  22. Liu, Y., Qu, C., Zhang, Y.: Stability of periodic peakons for the modified \(\mu \)-Camassa-Holm equation. Physica D 250, 66–74 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  23. Qu, C., Zhang, Y., Liu, X., Liu, Y.: Orbital stability of periodic peakons to a generalized \(\mu \)-Camassa-Holm equation. Arch. Rational Mech. Anal. 211, 593–617 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  24. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    Article  MathSciNet  Google Scholar 

  25. Tiǧlay, F.: Conservative weak solutions of the periodic Cauchy problem for \(\mu \)HS equation. J. Math. Phys. 56, 021504 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  26. Natali, F., Pelinovsky, D.E.: Instability of \(H^1\)-stable peakons in the Camassa-Holm equation. J. Diff. Eqs. 268, 7342–7363 (2020)

    Article  ADS  Google Scholar 

  27. Madiyeva, A., Pelinovsky, D.E.: Growth of perturbations to the peaked periodic waves in the Camassa-Holm equation. SIAM J. Math. Anal. 53, 3016–3039 (2021)

    Article  MathSciNet  Google Scholar 

  28. Chen, R.M., Pelinovsky, D.E.: \(W^{1,\infty }\) instability of \(H^1\)-stable peakons in the Novikov equation. Dyn. PDE. 18(3), 173–197 (2021)

    Google Scholar 

  29. Chen, R.M., Guo, F., Liu, Y., Qu, C.: Analysis on the blow-up of solutions to a class of integrable peakon equations. J. Funct. Anal. 270, 2343–2374 (2016)

    Article  MathSciNet  Google Scholar 

  30. Geyer, A., Pelinovsky, D.E.: Linear instability and uniqueness of the peaked periodic wave in the reduced Ostrovsky equation. SIAM J. Math. Anal. 51, 1188–1208 (2019)

    Article  MathSciNet  Google Scholar 

  31. Geyer, A., Pelinovsky, D.E.: Spectral instability of the peaked periodic wave in the reduced Ostrovsky equation. Proc. Amer. Math. Soc. 148, 5109–5125 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments and suggestions. This research was partially supported by the Natural Science Foundation of Hunan Province (No.2018JJ2272, No.2021JJ30166), by the Scientific Research Fund of Hunan Provincial Education Department (No.21A0414) and the National Natural Science Foundation of China (No. 11971163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijun Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Chen, A. Instability of \(H^1\)-stable Periodic Peakons for the \(\mu \)-Camassa-Holm Equation. J Dyn Diff Equat 36, 515–534 (2024). https://doi.org/10.1007/s10884-022-10165-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-022-10165-y

Keywords

Navigation