Skip to main content
Log in

Propagation Phenomena in Periodic Patchy Landscapes with Interface Conditions

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with a model for the dynamics of a single species in a one-dimensional heterogeneous environment. The environment consists of two kinds of patches, which are periodically alternately arranged along the spatial axis. We first establish the well-posedness for the Cauchy problem. Next, we give existence and uniqueness results for the positive steady state and we analyze the long-time behavior of the solutions to the evolution problem. Afterwards, based on dynamical systems methods, we investigate the spreading properties and the existence of pulsating traveling waves in the positive and negative directions. It is shown that the asymptotic spreading speed, \(c^*\), exists and coincides with the minimal wave speed of pulsating traveling waves in positive and negative directions. In particular, we give a variational formula for \(c^*\) by using the principal eigenvalues of certain linear periodic eigenvalue problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This statement shows that the solution u converges as \(t\rightarrow +\infty \) locally uniformly in space to the space-periodic function p. For a convergence result to time-periodic solutions for time-periodic quasilinear parabolic equations, we refer to [12].

  2. Notice that the continuity of \(x\mapsto W(x+s,x)\) is automatic if \(c\ne 0\), since u is assumed to be continuous itself in \({\mathbb {R}}\times {\mathbb {R}}\).

  3. We recall that \(k>0\) is given in (2.3). In all integrals, we integrate with respect to the one-dimensional Lebesgue measure.

  4. With a slight abuse of notation, the embedding \({\mathcal {D}}(A^\beta )\hookrightarrow C^{0,\delta }([-nl,nl])\) means that the elements \(U=(u_{2(-n)},\ldots ,u_{1n})^T\) of \({\mathcal {D}}(A^\beta )\) have continuous components \(u_{ij}\) in each corresponding closed patch \(\overline{I_{ij}}\), and that the function equal to each \(u_{ij}\) on each closed patch \(\overline{I_{ij}}\) is well defined, continuous in \([-nl,nl]\), vanishes at \(\pm nl\) and is Hölder continuous of exponent \(\delta \) in \([-nl,nl]\), with a sup norm and a Hölder norm controlled by \(\Vert U\Vert _{{\mathcal {D}}(A^\beta )}\).

  5. In (6.9), even if the test functions \(\psi \) are positive, continuous in \({\mathbb {R}}\), and have restrictions to \({\bar{I}}\) of class \(C^2({\bar{I}})\) for each patch \(I\subset {\mathbb {R}}\), the infimum of \({\mathcal {L}}_\mu \psi (x)/\psi (x)\) is taken over the open set \({\mathbb {R}}\setminus S\) and therefore is not a minimum in general. Notice that the quantity \({\mathcal {L}}_\mu \psi (x)/\psi (x)\) is in general not defined when \(x\in S\), even if the limits at \(x^\pm \) exist (but are different in general).

  6. Notice that \(p(x)=p(-l_1-x)\) for all \(x\in {\mathbb {R}}\) by invariance of (2.14) with respect to this change of variable and by the uniqueness result of Theorem 2.4, hence \(x\mapsto \omega (-l_1-x)\in {\mathcal {C}}_p\) for every \(\omega \in {\mathcal {C}}_p\).

  7. From the proofs below, it is easily seen that we can consider more general diffusion coefficients d(tx) such that \(d|_{(0,+\infty )\times I_i}\) can be extended to a continuous and positive function in \([0,+\infty )\times \overline{I_i}\), for each \(1\le i\le n\).

  8. The notation \(\overline{(a,b)}\) covers all possible four cases when a or b is finite or not. If a and b are finite, then \(\overline{(a,b)}=[a,b]\).

References

  1. Alqawasmeh, Y., Lutscher, F.: Movement behaviour of fish, harvesting-induced habitat degradation and the optimal size of marine reserves. Theor. Ecol. 12, 453–466 (2019)

    Article  Google Scholar 

  2. Alqawasmeh, Y., Lutscher, F.: Persistence and spread of stage-structured populations in heterogeneous landscapes. J. Math. Biol. 78, 1485–1527 (2019)

    Article  MathSciNet  PubMed  Google Scholar 

  3. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion and nerve propagation, In: Partial Differential Equations and Related Topics, Lecture Notes in Math 446, Springer, New York, pp. 5–49 (1975)

  4. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. 30, 33–76 (1978)

    Article  MathSciNet  Google Scholar 

  5. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)

    Article  MathSciNet  Google Scholar 

  6. Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. I - periodic framework. J. Eur. Math. Soc. 7, 173–213 (2005)

    Article  MathSciNet  Google Scholar 

  7. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: I-Species persistence. J. Math. Biol. 51, 75–113 (2005)

    Article  MathSciNet  PubMed  Google Scholar 

  8. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: II-Biological invasions and pulsating travelling fronts. J. Math. Pures Appl. 84, 1101–1146 (2005)

    Article  MathSciNet  Google Scholar 

  9. Berestycki, H., Nicolaenko, B., Scheurer, B.: Traveling wave solutions to combustion models and their singular limits. SIAM J. Math. Anal. 16, 1207–1242 (1985)

    Article  MathSciNet  Google Scholar 

  10. Berestycki, H., Rossi, L., Tellini, A.: Coupled reaction–diffusion equations on adjacent domains. https://hal.archives-ouvertes.fr/hal-03373185/document

  11. Bramson, M.: Convergence of solutions of the Kolmogorov equation to travelling waves. Memoirs Am. Math. Soc. 44 (1983)

  12. Brunovský, P., Poláčik, P., Sandstede, B.: Convergence in general periodic parabolic equations in one space dimension. Nonlinear Anal. 18, 209–215 (1992)

    Article  MathSciNet  Google Scholar 

  13. Cobbold, C., Lutscher, F., Sherratt, J.: Complex spatial patterns result from the Turing mechanism in a patchy landscape. Ecol. Complexity 24, 69–81 (2015)

    Article  Google Scholar 

  14. Ducrot, A., Giletti, T., Matano, H.: Existence and convergence to a propagating terrace in one-dimensional reaction–diffusion equations. Trans. Am. Math. Soc. 366, 5541–5566 (2014)

    Article  MathSciNet  Google Scholar 

  15. El Smaily, M.: Min-max formulas for the speeds of pulsating travelling fronts in periodic excitable media. Ann. Mat. Pura Appl. 189, 47–66 (2010)

    Article  MathSciNet  Google Scholar 

  16. Fang, J., Zhao, X.-Q.: Bistable waves for monotone semiflows with applications. J. Eur. Math. Soc. 17, 2243–2288 (2015)

    Article  MathSciNet  Google Scholar 

  17. Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomath. 28, Springer (1979)

  18. Fife, P.C., McLeod, B.: The approach of solutions of nonlinear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    Article  Google Scholar 

  19. Fisher, R.A.: The advance of advantageous genes. Ann. Eugenics 7, 335–369 (1937)

    Article  Google Scholar 

  20. Guo, J.-S., Hamel, F.: Propagation and blocking in periodically hostile environments. Arch. Ration. Mech. Anal. 204, 945–975 (2012)

    Article  MathSciNet  Google Scholar 

  21. Hamel, F.: Qualitative properties of KPP and monostable fronts: monotonicity and exponential decay. J. Math. Pures Appl. 89, 355–399 (2008)

    Article  MathSciNet  Google Scholar 

  22. Hamel, F., Lutscher, F., Zhang, M.: Propagation and blocking in a two-patch reaction–diffusion model, in preparation

  23. Hamel, F., Nolen, J., Roquejoffre, J.-M., Ryzhik, L.: A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Netw. Heterog. Media 8, 275–289 (2013)

    Article  MathSciNet  Google Scholar 

  24. Hamel, F., Roques, L.: Uniqueness and stability properties of monostable pulsating fronts. J. Eur. Math. Soc. 13, 345–390 (2011)

    Article  MathSciNet  Google Scholar 

  25. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, Lectures Notes in Math., Springer, New York (1981)

  26. Huang, J., Shen, W.: Speeds of spread and propagation for KPP models in time almost and space periodic media. SIAM J. Appl. Dyn. Syst. 8, 790–821 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. W. Hudson, B. Zinner, Existence of traveling waves for reaction–diffusion equations of Fisher type in periodic media. In: Boundary Value Problems for Functional-Differential Equations. J. Henderson (ed.), World Scientific, 187–199 (1995)

  28. Kanel’Ya, I.: Certain problems of burning-theory equations, Soviet Math. Dokl. 2, 48–51, 1961

  29. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bjul. Moskowskogo Gos. Univ. A 1, 1–26 (1937)

    Google Scholar 

  30. Lau, K.-S.: On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov. J. Differ. Equ. 59, 44–70 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  31. Liang, X., Zhao, X.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    Article  MathSciNet  Google Scholar 

  32. Liang, X., Zhao, X.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259, 857–903 (2010)

    Article  MathSciNet  Google Scholar 

  33. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1996)

    Google Scholar 

  34. Maciel, G., Cosner, C., Cantrell, R.S., Lutscher, F.: Evolutionarily stable movement strategies in reaction–diffusion models with edge behavior. J. Math. Biol. 80, 61–92 (2020)

    Article  MathSciNet  PubMed  Google Scholar 

  35. Maciel, G.A., Lutscher, F.: How individual movement response to habitat edges affects population persistence and spatial spread. Am. Nat. 182, 42–52 (2013)

    Article  PubMed  Google Scholar 

  36. Maciel, G.A., Lutscher, F.: Allee effects and population spread in patchy landscapes. J. Biol. Dyn. 9, 109–123 (2015)

    Article  MathSciNet  PubMed  Google Scholar 

  37. Maciel, G.A., Lutscher, F.: Movement behavior determines competitive outcome and spread rates in strongly heterogeneous landscapes. Theor. Ecol. 11, 351–365 (2018)

    Article  Google Scholar 

  38. Nadin, G.: Travelling fronts in space-time periodic media. J. Math. Pures Appl. 92, 232–262 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  39. Nolen, J., Rudd, M., Xin, J.: Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds. Dyn. Part. Differ. Equ. 2, 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  40. Nolen, J., Xin, J.: Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle. Disc. Cont. Dyn. Syst. 13, 1217–1234 (2005)

    Article  MathSciNet  Google Scholar 

  41. Ovaskainen, O., Cornell, S.J.: Biased movement at a boundary and conditional occupancy times for diffusion processes. J. Appl. Probab. 40, 557–580 (2003)

    Article  MathSciNet  Google Scholar 

  42. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, Berlin (1983)

  43. Sattinger, D.H.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355 (1976)

    Article  MathSciNet  Google Scholar 

  44. Sell, G., You, Y.: Dynamics of Evolutionary Equations, Applied Mathematical Sciences, vol. 143. Springer, Berlin (2002)

    Book  Google Scholar 

  45. Shen, W.: Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models. Trans. Am. Math. Soc. 362, 5125–5168 (2010)

    Article  MathSciNet  Google Scholar 

  46. Shigesada, N., Kawasaki, K.: Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution. Oxford University Press, Oxford (1997)

    Google Scholar 

  47. Shigesada, N., Kawasaki, K., Teramoto, E.: Traveling periodic waves in heterogeneous environments. Theor. Population Biol. 30, 143–160 (1986)

    Article  MathSciNet  Google Scholar 

  48. Shigesada, N., Kawasaki, K., Weinberger, H.F.: Spreading speeds of invasive species in a periodic patchy environment: effects of dispersal based on local information and gradient-based taxis. Japan J. Ind. Appl. Math. 32, 675–705 (2015)

    Article  MathSciNet  Google Scholar 

  49. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  50. Uchiyama, K.: The behavior of solutions of some semilinear diffusion equation for large time. J. Math. Kyoto Univ. 18, 453–508 (1978)

    MathSciNet  Google Scholar 

  51. Weinberger, H.F.: On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511–548 (2002)

    Article  MathSciNet  PubMed  Google Scholar 

  52. Xin, X.: Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity. J. Dyn. Differ. Equ. 3, 541–573 (1991)

    Article  Google Scholar 

  53. Xin, X.: Existence of planar flame fronts in convective-diffusive periodic media. Arch. Ration. Mech. Anal. 121, 205–233 (1992)

    Article  MathSciNet  Google Scholar 

  54. Xin, J.X.: Analysis and modeling of front propagation in heterogeneous media. SIAM Rev. 42, 161–230 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  55. Zheng, S.-M.: Nonlinear Evolution Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, 133. Chapman & Hall/CRC, Boca Raton, Florida (2004)

    Google Scholar 

Download references

Acknowledgements

This work has been carried out in the framework of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government program managed by the French National Research Agency (ANR). The research leading to these results has also received funding from ANR project RESISTE (ANR-18-CE45-0019). M. Zhang acknowledges the China Scholarship Council for the two-year financial support during her study at Aix-Marseille Université. This work was initiated while F. Lutscher held the position of Professeur Invité at Aix-Marseille Université. The authors are grateful for this opportunity and the financial support from Aix-Marseille Université. The authors would also like to thank Prof. Xing Liang and Prof. Xiao-Qiang Zhao for many helpful discussions. They are also grateful to an anonymous referee for his/her valuable comments, which enabled us to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Hamel.

Additional information

In memory of Pavol Brunovský, with admiration for a great mathematician.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The manuscript has no associated data.

Comparison Principles

Comparison Principles

In this appendix, we prove comparison results for the problem (2.9)–(2.10), as well as for a class of more general non-periodic versions of (2.9)–(2.10), and for the patchy model in an interval \((a,b)\subset \mathbb {R}\) composed of finitely many patches, say \(I_i\) for \(i=1,\ldots ,n\). For the latter, which we first deal with, the landscape (ab) can be either bounded or unbounded. Set \(-\infty \le a=x_0<x_1<\cdots <x_n=b\le +\infty \) and \(I_i=(x_{i-1},x_i)\) for \(i=1,\ldots ,n\). Since the results will be used in the present paper and in the future work [22], we state them in more generality to cover different applications. We consider a one-dimensional parabolic operator

$$\begin{aligned} {\mathcal {L}}u:=u_t-d(x)u_{xx}-c(t,x)u_x-F(x,u),~~\text {for}~t>0\hbox { and }x\in (a,b)\backslash \{x_1,\ldots ,x_{n-1}\}=\bigcup _{i=1}^nI_i, \end{aligned}$$

with interface conditions

$$\begin{aligned} u(t,x_i^-)=u(t,x_i^+)\hbox { and }u_x(t,x_i^-)=\sigma _iu_x(t,x_i^+),~~\hbox {for }t>0\hbox { and }i=1,\ldots ,n-1. \end{aligned}$$
(A.1)

If a or b is finite, we impose Dirichlet-type boundary conditions:

$$\begin{aligned} u(t,a)=\varphi ^-(t)~~\text {or}~~u(t,b)=\varphi ^+(t),~~\text {for}~t\ge 0, \end{aligned}$$
(A.2)

where \(\varphi ^\pm :[0,+\infty )\rightarrow {\mathbb {R}}\) are given continuous functions. Here, the function \(x\mapsto d(x)\) is assumed to be constant and positive in each patch, i.e., \(d|_{I_i}=d_i>0\) for some constant \(d_i\),Footnote 7 the function c is assumed to be continuous and bounded in \((0,T_0)\times \cup _{i=1}^nI_i\) for every \(T_0\in (0,+\infty )\), the \(\sigma _i\)’s are given positive real numbers, and, for each \(1\le i\le n\), \(F(x,s)=f_i(s)\) for \((x,s)\in I_i\times {\mathbb {R}}\), with \(f_i\in C^1({\mathbb {R}})\).

We first give the definition of super- and subsolutions of \({\mathcal {L}}u=0\) associated with the interface and boundary conditions (A.1)–(A.2).

Definition A.1

For \(T\in (0,+\infty ]\), we say that a continuous function \(\overline{u}:[0,T)\times \overline{(a,b)}\rightarrow {\mathbb {R}}\),Footnote 8 which is assumed to be bounded in \([0,T_0]\times \overline{(a,b)}\) for every \(T_0\in (0,T)\), is a supersolution for the problem \({\mathcal {L}}u=0\) with interface and boundary conditions (A.1)–(A.2), if \(\overline{u}|_{(0,T)\times \overline{I_i}}\in C^{1;2}_{t;x}((0,T)\times \overline{I_i})\) satisfies \({\mathcal {L}}\overline{u}|_{(0,T)\times I_i}\ge 0\) in the classical sense for each \(1\le i\le n\), and if

$$\begin{aligned} \overline{u}_x(t,x_i^-)\ge \sigma _i \overline{u}_x(t,x_i^+),~~\text {for}~t\in (0,T)\text { and}~i=1,\ldots ,n-1, \end{aligned}$$

and

$$\begin{aligned} \overline{u}(t,a)\ge \varphi ^-(t)~\text { or }~\overline{u}(t,b)\ge \varphi ^+(t),~~\text {for}~t\in [0,T), \end{aligned}$$

provided that a or b is finite. A subsolution can be defined in a similar way with all the inequality signs above reversed.

The first result of the appendix is a comparison principle between super- and subsolutions when the interval (ab) is bounded.

Proposition A.2

(Comparison principle in bounded intervals). Assume that \(-\infty<a<b<+\infty \). For \(T\in (0,+\infty ]\), let \(\overline{u}\) and \(\underline{u}\) be, respectively, a super- and a subsolution in \([0,T)\times [a,b]\) of \({\mathcal {L}}u=0\) with (A.1)–(A.2), and assume that \(\overline{u}(0,\cdot )\ge \underline{u}(0,\cdot )\) in [ab]. Then, \(\overline{u}\ge \underline{u}\) in \([0,T)\times [a,b]\) and, if \(\overline{u}(0,\cdot )\not \equiv \underline{u}(0,\cdot )\), then \(\overline{u}>\underline{u}\) in \((0,T)\times (a,b)\).

Proof

Fix any \(T_0\in (0,T)\) and set

$$\begin{aligned} M:=\max \left( \Vert \overline{u}\Vert _{L^\infty ([0,T_0]\times [a,b])},\Vert \underline{u}\Vert _{L^\infty ([0,T_0]\times [a,b])}\right) \ \hbox { and }\ \mu :=\max \limits _{1\le i\le n}\Vert f'_i\Vert _{L^\infty ([-M,M])}\nonumber \\ \end{aligned}$$
(A.3)

(notice that M and \(\mu \) are nonnegative real numbers owing to the assumptions on \(\overline{u}\), \(\underline{u}\) and \(f_i\)). Define

$$\begin{aligned} w(t,x):=\left( \overline{u}(t,x)-\underline{u}(t,x)\right) \,e^{-\mu t}\ \hbox { for }~(t,x)\in [0,T_0]\times [a,b]. \end{aligned}$$

The function w is continuous in \([0,T_0]\times [a,b]\), with restriction in \((0,T_0]\times \overline{I_i}\) of class \(C^{1;2}_{t;x}((0,T_0]\times \overline{I_i})\) for each \(1\le i\le n\), and we see from the mean value theorem that w satisfies

$$\begin{aligned} {\mathcal {N}}w:=w_t-d(x)w_{xx}-c(t,x)w_x+\big (\mu -F_s(x,\eta (t,x))\big )w\ge 0,~\text {for}~(t,x)\in (0,T_0]\!\times \!\bigcup \limits _{i=1}^n I_i, \end{aligned}$$
(A.4)

where \(\eta (t,x)\) is an intermediate value between \(\overline{u}(t,x)\) and \(\underline{u}(t,x)\) (hence, \(|\eta (t,x)|\le M\) and \(\mu -F_s(x,\eta (t,x))\ge 0\)). Moreover, there holds

$$\begin{aligned} w_x(t,x_i^-)\ge \sigma _i w_x(t,x_i^+),~~\text {for}~t\in (0,T_0]~\text {and}~i=1,\ldots ,n-1, \end{aligned}$$
(A.5)

together with \(w(0,x)=\overline{u}(0,x)-\underline{u}(0,x)\ge 0\) for all \(x\in [a,b]\), \(w(t,a)\ge 0\) and \(w(t,b)\ge 0\) for all \(t\in [0,T_0]\).

Consider now an arbitrary \(\varepsilon >0\) and let us introduce the auxiliary function z defined by

$$\begin{aligned} z(t,x):=w(t,x)+\varepsilon (t+1)\ \hbox { for}~ (t,x)\in [0,T_0]\times [a,b]. \end{aligned}$$

The function z has at least the same regularity as w, and \(z>0\) in \(\{0\}\times [a,b]\) and in \([0,T_0]\times \{a,b\}\). Moreover,

$$\begin{aligned} {\mathcal {N}}z={\mathcal {N}}w+\varepsilon + \big (\mu -F_s(x,\eta (t,x))\big )\varepsilon (t+1)\ge \varepsilon >0,~~\text {for}~(t,x)\in (0,T_0]\times \bigcup \limits _{i=1}^n I_i,\nonumber \\ \end{aligned}$$
(A.6)

with

$$\begin{aligned} z_x(t,x_i^-)\ge \sigma _i z_x(t,x_i^+),~~\text {for}~t\in (0,T_0]~\text {and}~i=1,\ldots ,n-1. \end{aligned}$$
(A.7)

We claim that \(z(t,x)>0\) for all \((t,x)\in [0,T_0]\times [a,b]\). Assume not. Then, by continuity, there is a point \((t_0,y_0)\in (0,T_0]\times (a,b)\) such that \(z(t_0,y_0)=\min _{[0,t_0]\times [a,b]}z=0\). We first assume that \(y_0\in I_i\) for some \(1\le i\le n\). Since \(z_t(t_0,y_0)\le 0\), \(z_x(t_0,y_0)=0\) and \(z_{xx}(t_0,y_0)\ge 0\), we see that

$$\begin{aligned} {\mathcal {N}}z(t_0,y_0)=z_t(t_0,y_0)-d_iz_{xx}(t_0,y_0)+c(t_0,y_0)z_x(t_0,y_0)+\big (\mu -f_i'(\eta (t_0,y_0))\big )z(t_0,y_0)\le 0,\nonumber \\ \end{aligned}$$
(A.8)

which is impossible by (A.6). Thus, necessarily, we can assume without loss of generality that \(y_0=x_i\) for some \(1\le i\le n-1\) and that \(z>0\) in \([0,t_0]\times \cup _{i=1}^nI_i\). Then, the Hopf lemma yields

$$\begin{aligned} z_x(t_0,x_i^-)<0\ \hbox { and }\ z_x(t_1,x_i^+)>0, \end{aligned}$$

which contradicts (A.7). Consequently, \(z>0\) in \([0,T_0]\times [a,b]\). Since \(\varepsilon >0\) was arbitrarily chosen, we obtain that \(w\ge 0\) in \([0,T_0]\times [a,b]\), which immediately implies \(\overline{u}\ge \underline{u}\) in \([0,T_0]\times [a,b]\), and then in \([0,T)\times [a,b]\) since \(T_0\in (0,T)\) was arbitrary.

Let us now further assume that \(\overline{u}(0,\cdot )\not \equiv \underline{u}(0,\cdot )\) in [ab], hence by continuity \(\overline{u}(0,\cdot )>\underline{u}(0,\cdot )\) in some non-empty open subinterval of (ab) which has a non-empty intersection with \(I_i\), for some \(1\le i\le n\). Since we already know from the previous paragraph that \(\overline{u}\ge \underline{u}\) in \([0,T)\times [a,b]\), it follows from the interior strong parabolic maximum principle that \(\overline{u}>\underline{u}\) in \((0,T)\times I_i\). If the interval (ab) reduces to a single patch (that is, \(n=1\)), then we are done. Otherwise, either \(x_{i-1}\) or \(x_i\) belongs to the open interval (ab). Let us consider the case when \(x_i\in (a,b)\) (hence, \(i\le n-1\)). We now claim that \(\overline{u}(t,x_i)>\underline{u}(t,x_i)\) for all \(t\in (0,T)\). Indeed, otherwise, there is a time \(t_0\in (0,T)\) such that \(\overline{u}(t_0,x_i)=\underline{u}(t_0,x_i)\), and the Hopf lemma then implies that

$$\begin{aligned} \overline{u}_x(t_0,x_i^-)<\underline{u}_x(t_0,x_i^-). \end{aligned}$$

But \(\overline{u}_x(t_0,x_i^+)\ge \underline{u}_x(t_0,x_i^+)\) since \(\overline{u}\ge \underline{u}\) in \([0,T)\times \overline{I_{i+1}}\) and \(\overline{u}(t_0,x_i)=\underline{u}(t_0,x_i)\). One finally gets a contradiction with the assumptions on the spatial derivatives of the super- and subsolutions \(\overline{u}\) and \(\underline{u}\) at \(x_i^\pm \). Therefore, \(\overline{u}(t,x_i)>\underline{u}(t,x_i)\) for all \(t\in (0,T)\). By continuity and by applying the strong interior parabolic maximum principle in \((0,T)\times I_{i+1}\), we infer that \(\overline{u}>\underline{u}\) in \((0,T)\times I_{i+1}\). By an immediate induction, going from one patch to the adjacent one in the left or right directions, we get that \(\overline{u}>\underline{u}\) in \((0,T)\times (a,b)\). The proof of Proposition A.2 is thereby complete. \(\square \)

Then we prove in Proposition A.3 the comparison principle when \((a,b)=\mathbb {R}\), still in the case of a finite number of interfaces (the case when the domain is of the form \((a,+\infty )\) with \(a\in {\mathbb {R}}\), or \((-\infty ,b)\) with \(b\in {\mathbb {R}}\), can be handled by a combination and a slight modification of the proofs of Propositions A.2 and A.3 ).

Proposition A.3

(Comparison principle in \(\mathbb {R}\) with finitely many interfaces). For \(T\in (0,+\infty ]\), let \(\overline{u}\) and \(\underline{u}\) be, respectively, a super- and a subsolution in \([0,T)\times {\mathbb {R}}\) of \({\mathcal {L}}u=0\) with (A.1), and assume that \(\overline{u}(0,\cdot )\ge \underline{u}(0,\cdot )\) in \({\mathbb {R}}\). Then, \(\overline{u}\ge \underline{u}\) in \([0,T)\times {\mathbb {R}}\) and, if \(\overline{u}(0,\cdot )\not \equiv \underline{u}(0,\cdot )\), then \(\overline{u}>\underline{u}\) in \((0,T)\times {\mathbb {R}}\).

Proof

Fix any \(T_0\in (0,T)\) and define the nonnegative real numbers M and \(\mu \) as in (A.3) with this time \({\mathbb {R}}\) instead of [ab] in the definition of M. Denote \(w(t,x):=(\overline{u}(t,x)-\underline{u}(t,x))e^{-\mu t}\) for \((t,x)\in [0,T_0]\times {\mathbb {R}}\). The function w is continuous and bounded in \([0,T_0]\times {\mathbb {R}}\), with restriction in \((0,T_0]\times \overline{I_i}\) of class \(C^{1;2}_{t;x}((0,T_0]\times \overline{I_i})\) for each \(1\le i\le n\) (notice that, here, \(I_1=(-\infty ,x_1)\) and \(I_n=(x_{n-1},+\infty )\) are unbounded), and w still satisfies (A.4)–(A.5), together with \(w(0,\cdot )=\overline{u}(0,\cdot )-\underline{u}(0,\cdot )\ge 0\) in \({\mathbb {R}}\). Set now \(R=\max _{1\le i\le n-1}|x_i|+1>0\), and let \(\varrho :{\mathbb {R}}\rightarrow {\mathbb {R}}\) be a nonnegative \(C^2\) function with bounded first and second order derivatives, and satisfying

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \varrho =0\hbox { in }[-R,R],\ \ \lim _{x\rightarrow +\infty }\varrho (x)=+\infty ,\\ \displaystyle \Big (\max _{1\le i\le n}d_i\Big )\times \Vert \varrho ''\Vert _{L^\infty ({\mathbb {R}})}+\Vert c\Vert _{L^\infty ((0,T_0]\times \cup _{i=1}^nI_i)}\times \Vert \varrho '\Vert _{L^\infty ({\mathbb {R}})}\le \frac{1}{2}.\end{array}\right. \end{aligned}$$

Let us consider an arbitrary \(\varepsilon >0\), and introduce an auxiliary function z defined by

$$\begin{aligned} z(t,x):=w(t,x)+\varepsilon (\varrho (|x|)+t+1)\ \hbox { for}~ (t,x)\in [0,T_0]\times {\mathbb {R}}. \end{aligned}$$

The function z has at least the same regularity as w, while \(z(0,x)\ge \varepsilon >0\) for all \(x\in {\mathbb {R}}\) and \(z(t,x)\rightarrow +\infty \) as \(|x|\rightarrow +\infty \) uniformly in \(t\in [0,T_0]\). Moreover,

$$\begin{aligned} {\mathcal {N}}z\ge {\mathcal {N}}w+\varepsilon -\varepsilon d(x)\varrho ''(|x|)-\varepsilon |c(t,x)\varrho '(|x|)|+ \big (\mu -F_s(x,\eta (t,x))\big )\varepsilon (\varrho (|x|)+t+1)\ge \frac{\varepsilon }{2}>0 \end{aligned}$$

for \((t,x)\in (0,T_0]\times \bigcup \limits _{i=1}^n I_i\), and (A.7) still holds from (A.5), the definition of R and the choice of \(\varrho \). We claim that \(z(t,x)>0\) for all \((t,x)\in [0,T_0]\times {\mathbb {R}}\). Assume not. Then, by continuity and the above properties of z, there is a point \((t_0,y_0)\in (0,T_0]\times {\mathbb {R}}\) such that \(z(t_0,y_0)=\min _{[0,t_0]\times {\mathbb {R}}}z=0\). If \(y_0\in I_i\) for some \(1\le i\le n\), then we see as in (A.8) that \({\mathcal {N}}z(t_0,y_0)\le 0\), which is impossible. Thus, we can assume without loss of generality that \(y_0=x_i\) for some \(1\le i\le n-1\) and that \(z>0\) in \([0,t_0]\times \cup _{i=1}^nI_i\). Then, the Hopf lemma yields \(z_x(t_0,x_i^-)<0\) and \(z_x(t_1,x_i^+)>0\), contradicting (A.7). Consequently, \(z>0\) in \([0,T_0]\times {\mathbb {R}}\). Hence, by passing to the limit as \(\varepsilon \rightarrow 0^+\), we infer that \(w\ge 0\) in \([0,T_0]\times {\mathbb {R}}\), that is, \(\overline{u}\ge \underline{u}\) in \([0,T_0]\times {\mathbb {R}}\), and then \(\overline{u}\ge \underline{u}\) in \([0,T)\times {\mathbb {R}}\) owing to the arbitrariness of \(T_0\in (0,T)\).

Lastly, if one further assumes that \(\overline{u}(0,\cdot )\not \equiv \underline{u}(0,\cdot )\), then the proof of the strict inequality \(\overline{u}>\underline{u}\) in \((0,T)\times \mathbb {R}\) follows similar lines as in the proof of the preceding proposition. \(\square \)

The last statement is a comparison principle for a class, more general than (2.9)–(2.10), of non-periodic problems involving countably many interfaces. Namely, we are given a countable set \(S=\{x_i:i\in {\mathbb {Z}}\}\subset {\mathbb {R}}\) with

$$\begin{aligned} \delta :=\inf _{i\in {\mathbb {Z}}}\,(x_{i+1}-x_i)>0, \end{aligned}$$
(A.9)

and we consider the problem

$$\begin{aligned} \left\{ \begin{array}{rcll} u_t-d(x)u_{xx}-c(t,x)u_x &{} = &{} F(x,u), &{} t>0,\ x\in \mathbb {R}\!\setminus \!S,\\ u(t,x_i^-) &{} = &{} u(t,x_i^+), &{} t> 0,\ i\in {\mathbb {Z}},\\ u_x(t,x_i^-) &{} = &{} \sigma _i u_x(t,x_i^+), &{} t> 0,\ i\in {\mathbb {Z}}.\end{array}\right. \end{aligned}$$
(A.10)

We assume that the function \(x\mapsto d(x)\) is equal to a positive constant \(d_i\) in each interval \((x_i,x_{i+1})\), and that \(\sup _{i\in {\mathbb {Z}}}d_i\!<\!+\infty \). The function c is assumed to be continuous and bounded in \((0,T_0)\times ({\mathbb {R}}\!\setminus \!S)\) for every \(T_0\in (0,+\infty )\), the \(\sigma _i\)’s are given positive real numbers, and there are \(C^1({\mathbb {R}})\) functions \((f_i)_{i\in {\mathbb {Z}}}\) such that \(F(x,s)=f_i(s)\) for every \((x,s)\in (x_i,x_{i+1})\times {\mathbb {R}}\) and \(i\in {\mathbb {Z}}\), with \(\sup _{i\in {\mathbb {Z}}}\Vert f'_i\Vert _{L^\infty ([-L,L])}\!<\!+\infty \) for every \(L>0\).

For \(T\in (0,+\infty ]\), we say that a continuous function \(\overline{u}:[0,T)\times {\mathbb {R}}\rightarrow {\mathbb {R}}\), which is assumed to be bounded in \([0,T_0]\times {\mathbb {R}}\) for every \(T_0\in (0,T)\), is a supersolution of (A.10) in \([0,T)\times {\mathbb {R}}\), if, for every \(i\in {\mathbb {Z}}\), the function \(\overline{u}|_{(0,T)\times [x_i,x_{i+1}]}\) is of class \(C^{1;2}_{t;x}((0,T)\times [x_i,x_{i+1}])\) and satisfies \(u_t(t,x)-d_iu_{xx}(t,x)-c(t,x)u_x(t,x)\ge F(x,u(t,x))\) for every \((t,x)\in (0,T)\times (x_i,x_{i+1})\), and if \(\overline{u}_x(t,x_i^-)\ge \sigma _i \overline{u}_x(t,x_i^+)\) for every \(i\in {\mathbb {Z}}\) and \(t\in (0,T)\). A subsolution is defined similarly with all the inequality signs reversed.

The following result provides a comparison between sub- and supersolutions of (A.10) with ordered initial conditions, thus yielding the uniqueness of solutions for given initial conditions.

Proposition A.4

(Comparison principle for problems of type (A.10)) For \(T\in (0,+\infty ]\), let \(\overline{u}\) and \(\underline{u}\) be, respectively, a super- and a subsolution of (A.10) in \([0,T)\times {\mathbb {R}}\) with \(\overline{u}(0,\cdot )\ge \underline{u}(0,\cdot )\) in \({\mathbb {R}}\). Then, \(\overline{u}\ge \underline{u}\) in \([0,T)\times {\mathbb {R}}\), and, if \(\overline{u}(0,\cdot )\not \equiv \underline{u}(0,\cdot )\), then \(\overline{u}>\underline{u}\) in \((0,T)\times {\mathbb {R}}\).

Proof

Fix any \(T_0\in (0,T)\). Define

$$\begin{aligned} M\!:=\!\max \!\big (\Vert \overline{u}\Vert _{L^\infty ([0,T_0]\times {\mathbb {R}})},\Vert \underline{u}\Vert _{L^\infty ([0,T_0]\times {\mathbb {R}})}\big )\hbox { and }\mu \!:=\!\sup _{i\in {\mathbb {Z}}}\Vert f'_i\Vert _{L^\infty ([-M,M])}\!=\!\!\sup _{x\in {\mathbb {R}}\setminus S,\,|s|\le M}\!|F_s(x,s)|, \end{aligned}$$

which are two nonnegative real numbers. Denote \(w(t,x):=(\overline{u}(t,x)-\underline{u}(t,x))e^{-\mu t}\) for \((t,x)\in [0,T_0]\times {\mathbb {R}}\). The function w is continuous and bounded in \([0,T_0]\times {\mathbb {R}}\), and it still satisfies inequalities similar to (A.4) (with, here, \(\cup _{i=1}^nI_i\) replaced by \({\mathbb {R}}\setminus S\)), together with \(w_x(t,x_i^-)\ge \sigma _iw_x(t,x_i^+)\) for every \(i\in {\mathbb {Z}}\) and \(t\in (0,T_0]\). Furthermore, \(w(0,\cdot )=\overline{u}(0,\cdot )-\underline{u}(0,\cdot )\ge 0\) in \({\mathbb {R}}\).

Let now \((\rho _m)_{m\in {\mathbb {N}}}\) be a family of nonnegative \(C^\infty ({\mathbb {R}})\) mollifiers with unit mass and such that each function \(\rho _m\) has a support included in \([-1/m,1/m]\). Remember that \(\delta >0\) is defined in (A.9). With \(\mathbbm {1}_E\) denoting the characteristic function of a set E, and \(\star \) being the convolution product, we then define

$$\begin{aligned} F:=\mathop {\bigcup }_{i\in {\mathbb {Z}}}\,\left( x_i+\frac{3\delta }{10},x_{i+1}-\frac{3\delta }{10}\right) \end{aligned}$$

and

$$\begin{aligned} \phi :=\rho _m\star \left( -\mathbbm {1}_{F\cap (-\infty ,-1/2)}+\mathbbm {1}_{F\cap (1/2,+\infty )}\right) , \end{aligned}$$

with a certain m large enough so that the \(C^\infty ({\mathbb {R}})\) function \(\phi \) satisfies \(\phi \le 0\) in \((-\infty ,0]\), \(\phi \ge 0\) in \([0,+\infty )\), \(\phi =-1\) in \([x_i+2\delta /5,x_{i+1}-2\delta /5]\cap (-\infty ,-1]\), \(\phi =1\) in \([x_i+2\delta /5,x_{i+1}-2\delta /5]\cap [1,+\infty )\) and \(\phi =0\) in \([x_i-\delta /5,x_i+\delta /5]\), for all \(i\in {\mathbb {Z}}\). Notice that \(-1\le \phi \le 1\) in \({\mathbb {R}}\) and that \(\phi '\) is bounded in \({\mathbb {R}}\). Let us then define

$$\begin{aligned} \varrho (x):=\int _0^x\phi (y)\,\mathrm {d}y \end{aligned}$$

for \(x\in {\mathbb {R}}\). The \(C^\infty ({\mathbb {R}})\) function \(\varrho \) is nonnegative, it has bounded first and second order derivatives, and \(\varrho (x)\rightarrow +\infty \) as \(x\rightarrow \pm \infty \). There is then a positive real number \(\kappa >0\) such that

$$\begin{aligned} \left( \sup _{i\in {\mathbb {Z}}}d_i\right) \times \Vert \kappa \varrho ''\Vert _{L^\infty ({\mathbb {R}})} +\Vert c\Vert _{L^\infty ((0,T_0]\times ({\mathbb {R}}\setminus S))}\times \Vert \kappa \varrho '\Vert _{L^\infty ({\mathbb {R}})}\le \frac{1}{2}. \end{aligned}$$

Let us then consider an arbitrary \(\varepsilon >0\), and introduce an auxiliary function z defined by

$$\begin{aligned} z(t,x):=w(t,x)+\varepsilon (\kappa \varrho (x)+t+1)\ \hbox { for}~ (t,x)\in [0,T_0]\times {\mathbb {R}}. \end{aligned}$$

The function z is continuous in \([0,T_0]\times {\mathbb {R}}\), and it satisfies

$$\begin{aligned} z(0,x)\ge \varepsilon >0\hbox { for all}~ x\in {\mathbb {R}}\hbox { , and}~ z(t,x)\rightarrow +\infty ~ \hbox { as}~ |x|\rightarrow +\infty ~\hbox { uniformly in}~ t\in [0,T_0],\nonumber \\ \end{aligned}$$
(A.11)

since w is bounded in \([0,T_0]\times {\mathbb {R}}\) and \(\varrho (\pm \infty )=+\infty \). Moreover, with the same notations as in (A.4), one has

$$\begin{aligned} {\mathcal {N}}z(t,x)= & {} \underbrace{{\mathcal {N}}w(t,x)}_{\ge 0}+\varepsilon -\underbrace{(\varepsilon d(x)\kappa \varrho ''(x)\!+\!\varepsilon c(t,x)\kappa \varrho '(x))}_{\le \varepsilon /2}+\underbrace{(\mu \!-\!F_s(x,\eta (t,x)))}_{\ge 0}\underbrace{\varepsilon (\varrho (x)+t+1)}_{\ge 0}\\\ge & {} \displaystyle \frac{\varepsilon }{2}>0 \end{aligned}$$

for all \((t,x)\in (0,T_0]\times ({\mathbb {R}}\!\setminus \!S)\), while \(z_x(t,x_i^-)\ge \sigma _iz_x(t,x_i^+)\) for all \(t\in (0,T_0]\) and \(i\in {\mathbb {Z}}\) (since w satisfies these inequalities and \(\varrho '(x_i)=\phi (x_i)=0\) for each \(i\in {\mathbb {Z}}\)).

We claim that \(z>0\) in \([0,T_0]\times {\mathbb {R}}\). Assume not. Then, by continuity and (A.11), there is \((t_0,y_0)\in (0,T_0]\times {\mathbb {R}}\) such that \(z(t_0,y_0)=\min _{[0,t_0]\times {\mathbb {R}}}z=0\). If \(y_0\in (x_i,x_{i+1})\) for some \(i\in {\mathbb {Z}}\), then we see as in (A.8) that \({\mathcal {N}}z(t_0,y_0)\le 0\), which is impossible. Thus, one can assume without loss of generality that \(y_0=x_i\) for some \(i\in {\mathbb {Z}}\) and that \(z>0\) in \([0,t_0]\times ({\mathbb {R}}\setminus S)\), whence \(z_x(t_0,x_i^-)<0\) and \(z_x(t_0,x_i^+)>0\) from the Hopf lemma, which is again impossible. As a consequence, \(z>0\) in \([0,T_0]\times {\mathbb {R}}\), hence \(w\ge 0\) in \([0,T_0]\times {\mathbb {R}}\) due to the arbitrariness of \(\varepsilon >0\), and finally \(\overline{u}\ge \underline{u}\) in \([0,T)\times {\mathbb {R}}\) due to the arbitrariness of \(T_0\in (0,T)\).

Lastly, if one further assumes that \(\overline{u}(0,\cdot )\not \equiv \underline{u}(0,\cdot )\) in \({\mathbb {R}}\), then one concludes as in the proof of Proposition A.2 that \(\overline{u}>\underline{u}\) in \((0,T)\times \mathbb {R}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamel, F., Lutscher, F. & Zhang, M. Propagation Phenomena in Periodic Patchy Landscapes with Interface Conditions. J Dyn Diff Equat 36 (Suppl 1), 435–486 (2024). https://doi.org/10.1007/s10884-022-10134-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-022-10134-5

Keywords

Mathematics Subject Classification

Navigation