Skip to main content
Log in

Symmetric Central Configurations and the Inverse Problem

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider the problem: given a configuration, find the masses which make it central. This is the inverse problem for central configurations. The main result is a symmetry theorem (see Theorem 1) that allows simplifying the equations for symmetric central configurations, with any symmetry group, at any dimension, using linear representations of finite groups. Using this theorem, one can study the existence of central configurations with a given symmetry group and also study the masses allowed in this central configuration. As an application, we determine the masses when the configurations are the Platonic solids. The simplifications significantly reduce the equations allowing to use of a computer algebra system to make exact computations. In this case, we prove that a central configuration is possible if and only if the masses are equal (see Theorem 5). Except for the Tetrahedron that is known to be a central configuration for any masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This value for c coincides with the one found in [24] for the square. Compare with Theorem 1, in that reference, and note that by our Proposition 2.1, we have \(c=\frac{\lambda }{M}\), so in the notation of [24], \(c=\frac{\omega ^ 2}{M}=\frac{\gamma }{N}\).

References

  1. Albouy, A.: Integral manifolds of the N-body problem. Invent. Math. 114, 463–488 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Albouy, A., Cabral, H.E., Santos, A.A.: Some problems on the classical n-body problem. Celestial Mech. Dynam. Astronom. 113, 369–375 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  3. Albouy, A., Kaloshin, V.: Finiteness of central configurations of five bodies in the plane. Ann. Math. 176, 535–588 (2012)

    Article  MathSciNet  Google Scholar 

  4. Albouy, A., Moeckel, R.: The inverse problem for collinear central configurations. Celestial Mech. Dynam. Astronom. 77, 77–91 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Cabral, H.E.: On the integral manifolds of the N-body problem. Invent. Math. 20(1), 59–72 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cabral, H.E., McCord, C.: Topology of the integral manifolds of the N-body problem with positive energy. J. Dyn. Diff. Eq. 14(2), 259–293 (2002)

    Article  MathSciNet  Google Scholar 

  7. Cedó, F., Llibre, J.: Symmetric central configurations of the spatial n-body problem. J. Geom. Phys. 6, 367–394 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  8. Corbera, M., Llibre, J.: On the existence of central configurations of p nested regular polyhedra. Celestial Mech. Dynam. Astronom. 106, 197–207 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. Corbera, M., Delgado, J., Llibre, J.: On the existence of central configurations of p nested n-gons. Qual. Theory Dyn. Syst. 8, 255–265 (2009)

    Article  MathSciNet  Google Scholar 

  10. Davis, C., Geyer, S., Johnson, W., Xie, Z.: Inverse problem of central configurations in the collinear 5-body problem. J. Math. Phys. 59, 052902 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fernandes, A.C., Garcia, B.A., Mello, L.F.: Convex but not strictly convex central configurations. J. Dyn. Diff. Eq. 30(4), 1427–1438 (2018)

    Article  MathSciNet  Google Scholar 

  12. Ferrario, D.L.: Pfaffians and the inverse problem for collinear central configurations. Celestial Mech. Dyn. Astron. 132, 1–16 (2020)

    Article  MathSciNet  Google Scholar 

  13. Hampton, M., Moeckel, R.: Finiteness of relative equilibria of the four-body problem. Invent. Math. 163, 289–312 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. Helmholtz, H.: Uber Integrale der hydrodynamischen Gleichungen, Welche den Wirbelbewegungen entsprechen, Crelle’s Journal für Mathematik 55, 25-55 (1858). English translation by P. G. Tait, P.G., On the integrals of the hydrodynamical equations which express vortex motion, Philosophical Magazine, 485-512 (1867)

  15. Leandro, E. S. G.: Factorization of the Stability Polynomials of Ring Systems. arXiv preprint arXiv:1705.02701 , (2017)

  16. Llibre, J., Moeckel, R., Simó, C.:Central configurations, periodic orbits, and Hamiltonian systems. Birkhäuser, (2015)

  17. McCord, C.K.: The integral manifolds of the N body problem. J. Dyn. Diff. Eq. (2021). https://doi.org/10.1007/s10884-021-09979-z

    Article  Google Scholar 

  18. Meyer, K., Hall, G., Offin, D.: Introduction to Hamiltonian dynamical systems and the N-body problem, vol. 90. Springer, Berlin (2008)

    Google Scholar 

  19. Moeckel, R.: Generic finiteness for Dziobek configurations. Trans. Amer. Math. Soc. 353, 4673–4686 (2001)

    Article  MathSciNet  Google Scholar 

  20. Moeckel, R., Simó, C.: Bifurcation of spatial central configurations from planar ones. SIAM J. Math. Anal. 26, 978–998 (1995)

    Article  MathSciNet  Google Scholar 

  21. Montaldi, J.: Existence of symmetric central configurations. Celestial Mech. Dynam. Astronom. 122, 405–418 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Moulton, F.R.: The straight line solutions of the problem of N bodies. Ann. Math. 12, 1–17 (1910)

    Article  MathSciNet  Google Scholar 

  23. O’Neil, K.: A stationary configurations of point vortices. Trans. Amer. Math. Soc. 302, 383–425 (1987)

  24. Perko, L.M., Walter, E.L.: Regular polygon solutions of the N-body problem. Proc. Amer. Math. Soc. 94, 301–309 (1985)

    MathSciNet  Google Scholar 

  25. Saari, D.: Expanding gravitational systems. Trans. Amer. Math. Soc. 156, 219–240 (1971)

    Article  MathSciNet  Google Scholar 

  26. SageMath, the Sage Mathematics Software System (Version 9.5). The Sage Developers (2020). http://www.sagemath.org

  27. Santos, M.P.: The inverse problem for homothetic polygonal central configurations. Celestial Mech. Dynam. Astronom. 131, 17 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  28. Santos, M. P.: Symmetric Central Configurations and the Inverse Problem, GitHub repository (2021). https://github.com/MarceloPSantos/symmetric_cc_inverse_problem. Accessed 14 Set 2021

  29. Serre, J.P.: Linear representations of finite groups, vol. 42. Springer, Berlin (2012)

    Google Scholar 

  30. Smale, S.: Topology and mechanics. I. Invent. Math. 10, 305–331 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  31. Smale, S.: Topology and mechanics. II. Invent. Math. 11, 45–64 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  32. Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)

    Article  MathSciNet  Google Scholar 

  33. Stiefel, E., Fässler, A.: A group theoretical methods and their applications. Springer, Berlin (2012)

    Google Scholar 

  34. Xie, Z.: Inverse problem of central configurations and singular curve in the collinear 4-body problem. Celestial Mech. Dyn. Astron. 107, 353–376 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  35. Wang, Z.: Regular polygon central configurations of the N-body problem with general homogeneous potential. Nonlinearity 32, 2426 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. Wang, Z., Li, F.: A note on the two nested regular polygonal central configurations. Proc. Amer. Math. Soc. 143, 4817–4822 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Eduardo S. Leandro for suggesting that representation theory could be helpful in studying central configurations, as well as many insightful comments and suggestions. Also, thanks to Thiago Dias and Leon D. Silva for the helpful comments and suggestions. And thanks to the anonymous reviewers whose suggestions improved an earlier version of this paper and the Department of Mathematics at Universidade Federal Rural de Pernambuco for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo P. Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, M.P. Symmetric Central Configurations and the Inverse Problem. J Dyn Diff Equat 36, 209–229 (2024). https://doi.org/10.1007/s10884-021-10123-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10123-0

Keywords

Mathematics Subject Classification

Navigation