Skip to main content
Log in

Renormalized Oscillation Theory for Linear Hamiltonian Systems on [0, 1] Via the Maslov Index

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Working with a general class of regular linear Hamiltonian systems, we show that renormalized oscillation results can be obtained in a natural way through consideration of the Maslov index associated with appropriately chosen paths of Lagrangian subspaces of \({\mathbb {C}}^{2n}\). We verify that our applicability class includes Dirac and Sturm–Liouville systems, as well as a system arising from differential-algebraic equations for which the spectral parameter appears nonlinearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Atkinson, F.V., Langer, H., Mennicken, R., Shkalikov, A.A.: The essential spectrum of some matrix operators. Math. Nachr. 167, 5–20 (1994)

    Article  MathSciNet  Google Scholar 

  2. Arnol’d, V.I.: Characteristic class entering in quantization conditions. Funct. Anal. Appl. 1, 1–14 (1967)

    Article  Google Scholar 

  3. Arnol’d, V.I.: The complex Lagrangian Grassmannian. Funct. Anal. Appl. 34, 208–210 (2000)

    Article  MathSciNet  Google Scholar 

  4. Booss-Bavnbek, B., Zhu, C.: The Maslov index in symplectic Banach spaces. Mem. Am. Math. Soc. 252(1201) (2018)

  5. Booss-Bavnbek, B., Furutani, K.: The Maslov index: a functional analytical definition and the spectral flow formula. Tokyo J. Math. 21, 1–34 (1998)

    Article  MathSciNet  Google Scholar 

  6. Beyn, W.-J., Latushkin, Y., Rottmann-Matthes, J.: Finding eigenvalues of holomorphic Fredholm operator pencils using boundary value problems and contour integrals. Integr. Equ. Oper. Theory 78, 155–211 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bott, R.: On the iteration of closed geodesics and the Sturm intersection theory. Commun. Pure Appl. Math. 9, 171–206 (1956)

    Article  MathSciNet  Google Scholar 

  8. Cappell, S., Lee, R., Miller, E.: On the Maslov index. Commun. Pure Appl. Math. 47, 121–186 (1994)

    Article  MathSciNet  Google Scholar 

  9. Elyseeva, J.: Relative oscillation theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter, Preprint (2021)

  10. Furutani, K.: Fredholm–Lagrangian–Grassmannian and the Maslov index. J. Geom. Phys. 51, 269–331 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  11. Gesztesy, F., Simon, B., Teschl, G.: Zeros of the Wronskian and renormalized oscillation theory. Am. J. Math. 118, 571–594 (1996)

    Article  MathSciNet  Google Scholar 

  12. Gesztesy, F., Zinchenko, M.: Renormalized oscillation theory for Hamiltonian systems. Adv. Math. 311, 569–597 (2017)

    Article  MathSciNet  Google Scholar 

  13. Howard, P., Jung, S., Kwon, B.: The Maslov index and spectral counts for Hamiltonian systems on [0,1]. J. Dyn. Differ. Equ. 30, 1703–1720 (2018)

    Article  MathSciNet  Google Scholar 

  14. Howard, P., Latushkin, Y., Sukhtayev, A.: The Maslov index for Lagrangian pairs on \({\mathbb{R}}^{2n}\). J. Math. Anal. Appl. 451, 794–821 (2017)

    Article  MathSciNet  Google Scholar 

  15. Hu, X., Portaluri, A.: Index theory for heteroclinic orbits of Hamiltonian systems. Calc. Var. 56(6), 167 (2017)

    Article  MathSciNet  Google Scholar 

  16. Howard, P., Sukhtayev, A.: The Maslov and Morse indices for Schrödinger operators on \([0, 1]\). J. Differ. Equ. 260, 4499–4559 (2016)

    Article  ADS  Google Scholar 

  17. Jones, C.K.R.T., Latushkin, Y., Sukhtaiev, S.: Counting spectrum via the Maslov index for one dimensional \(\theta \)-periodic Schrödinger operators. Proc. AMS 145, 363–377 (2017)

    Article  Google Scholar 

  18. Kato, T.: Perturbation Theory for Linear Operators. Springer (1980)

  19. Kollár, R., Miller, P.D.: Graphical Krein signature theory and Evans–Krein functions. SIAM Rev. 56, 73–123 (2014)

    Article  MathSciNet  Google Scholar 

  20. Kapitula, T., Promislow, K.: Spectral and Dynamic Stability of Nonlinear Waves, Applied Mathematical Sciences 185. Springer, New York (2013)

  21. Kratz, W.: Quadratic Functionals in Variational Analysis and Control Theory, Mathematical Topics 6, Wiley-VCH (1995)

  22. Kostrykin, V., Schrader, R.: Kirchhoff’s rule for quantum wires. J. Phys. A: Math. Gen. 32, 595–630 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  23. Krall, A.M.: Hilbert Space, Boundary Value Problems and Orthogonal Polynomials. Birkhäuser Verlag (2002)

  24. Latushkin, Y., Sukhtayev, A.: The Evans function and the Weyl-Titchmarsh function. Discrete Contin. Dyn. Syst. Ser. S 5, 939–970 (2012)

  25. Phillips, J.: Selfadjoint Fredholm operators and spectral flow. Can. Math. Bull. 39, 460–467 (1996)

    Article  Google Scholar 

  26. Piziak, R., Odell, P.L., Hahn, R.: Constructing projections on sums and intersections. Comput. Math. Appl. 37, 67–74 (1999)

    MathSciNet  Google Scholar 

  27. Robbin, J., Salamon, D.: The Maslov index for paths. Topology 32, 827–844 (1993)

    Article  MathSciNet  Google Scholar 

  28. Schulz-Baldes, H.: Rotation numbers for Jacobi matrices with matrix entries. Math. Phys. Electron. J. 13, 5, 40 (2007)

    MathSciNet  Google Scholar 

  29. Schulz-Baldes, H.: Sturm intersection theory for periodic Jacobi matrices and linear Hamiltonian systems. Linear Algebra Appl. 436(3), 498–515 (2012)

    Article  MathSciNet  Google Scholar 

  30. Teschl, G.: Oscillation theory and renormalized oscillation theory for Jacobi operators. J. Differ. Equ. 129, 532–558 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  31. Teschl, G.: Renormalized oscillation theory for Dirac operators. Proc. AMS 126, 1685–1695 (1998)

    Article  MathSciNet  Google Scholar 

  32. Weidmann, J.: Spectral Theory of Ordinary Differential Operators. Springer, Berlin (1987)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Yuri Latushkin for bringing [12] to their attention, for suggesting that the problem could be approached with the Maslov index, and for several helpful conversations along the way. A.S. acknowledges support from the National Science Foundation under grant DMS-1910820.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alim Sukhtayev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this short appendix, we briefly discuss the view of our operator

$$\begin{aligned} {\mathcal {L}} (\lambda ) := J \frac{d}{dx} - {\mathbb {B}} (\cdot ; \lambda ) \end{aligned}$$
(5.14)

as an operator pencil. In order to keep the discussion brief, we focus on the case of boundary conditions (BC1), for which the domain of \({\mathcal {L}} (\lambda )\) can be taken to be

$$\begin{aligned} \begin{aligned} {\mathcal {D}} ({\mathcal {L}} (\lambda ))&:= \{y \in L^2 ((0,1), {\mathbb {C}}^{2n}): y \in {\text {AC}}\,([0,1], {\mathbb {C}}^{2n}), \\&\quad \quad {\mathcal {L}} y \in L^2 ((0,1), {\mathbb {C}}^{2n}), \, \alpha y(0) = 0, \, \beta y(1) = 0 \}. \end{aligned} \end{aligned}$$

We will confine the discussion in this appendix to the case in which \({\mathbb {B}} (\cdot ; \lambda ) \in L^2 ((0,1), {\mathbb {C}}^{2n \times 2n})\) for all \(\lambda \in I\). Under this additional assumption, \({\mathcal {D}} ({\mathcal {L}} (\lambda ))\) is independent of \(\lambda \), and in order to emphasize this independence we will express \({\mathcal {D}} ({\mathcal {L}} (\lambda ))\) as \({\mathcal {D}}\). Here, \(I \subset {\mathbb {R}}\) continues to be the interval specified in the introduction containing all values \(\lambda \) under consideration.

Following the development of [6], we specify the resolvent set of \({\mathcal {L}}\) as

$$\begin{aligned} \rho ({\mathcal {L}}) := \{\lambda \in I: {\mathcal {L}} (\lambda )^{-1} \in {\mathcal {B}} (L^2 ((0,1), {\mathbb {C}}^{2n}))\}, \end{aligned}$$
(5.15)

where \({\mathcal {B}} (L^2 ((0,1), {\mathbb {C}}^{2n}))\) denotes the linear space of all bounded linear operators mapping \(L^2 ((0,1), {\mathbb {C}}^{2n})\) to itself, and we specify the spectrum of \({\mathcal {L}}\) as \(\sigma ({\mathcal {L}}) = I \backslash \rho ({\mathcal {L}})\). More generally, operator pencils are often defined on open sets of the complex plane \(\Omega \subset {\mathbb {C}}\), but such a specification is not necessary for this brief discussion. In order to be precise about terminology, we define what we mean by the essential spectrum and the point spectrum (adapted from [20]). For this, we assume, as in the current setting, that \({\mathcal {D}} := {\text {dom}}\,({\mathcal {L}} (\lambda ))\) is independent of \(\lambda \), and we denote by \({\mathbb {L}} (L^2 ((0,1),{\mathbb {C}}^{2n}))\) the space of all closed linear operators mapping \({\mathcal {D}} \subset L^2 ((0,1),{\mathbb {C}}^{2n})\) to \(L^2 ((0,1),{\mathbb {C}}^{2n})\).

Definition 5.1

We define the essential spectrum \(\sigma _{{\text {ess}}\,} ({\mathcal {L}})\) of an operator pencil \({\mathcal {L}}: I \rightarrow {\mathbb {L}} (L^2 ((0,1),{\mathbb {C}}^{2n}))\) as the set of \(\lambda \in I\) for which either \({\mathcal {L}} (\lambda )\) is not Fredholm or \({\mathcal {L}} (\lambda )\) is Fredholm with Fredholm index \({\text {ind}}\,({\mathcal {L}} (\lambda )) \ne 0\). We define the point spectrum \(\sigma _{{\text {pt}}\,} ({\mathcal {L}})\) as the set of \(\lambda \in I\) so that \({\text {ind}}\,({\mathcal {L}} (\lambda )) = 0\), but \({\mathcal {L}} (\lambda )\) is not invertible.

With these definitions, we see that the sets \(\rho ({\mathcal {L}})\), \(\sigma _{{\text {ess}}\,} ({\mathcal {L}})\), and \(\sigma _{{\text {pt}}\,} ({\mathcal {L}})\) are mutually exclusive, and

$$\begin{aligned} I = \rho ({\mathcal {L}}) \cup \sigma _{{\text {ess}}\,} ({\mathcal {L}}) \cup \sigma _{{\text {pt}}\,} ({\mathcal {L}}); \quad \sigma ({\mathcal {L}}) = \sigma _{{\text {ess}}\,} ({\mathcal {L}}) \cup \sigma _{{\text {pt}}\,} ({\mathcal {L}}). \end{aligned}$$

Another way to view the definitions is as follows. A value \(\lambda _0 \in I\) is categorized as an element of \(\rho ({\mathcal {L}})\), \(\sigma _{{\text {ess}}\,} ({\mathcal {L}})\), or \(\sigma _{{\text {pt}}\,} ({\mathcal {L}})\) according precisely to the categorization of 0 relative to the operator \({\mathcal {L}} (\lambda _0)\).

Returning to our particular operator pencil from (5.14), it’s a straightforward application of the methods of [32] to verify that under our Assumptions (A), we have the following: for each \(\lambda \in I\), \({\mathcal {L}} (\lambda )\) is Fredholm with index zero, and indeed is self-adjoint. We can conclude that \(\sigma ({\mathcal {L}})\) is comprised entirely of point spectrum, and in particular that for each \(\lambda \in \sigma ({\mathcal {L}})\) there exist a finite number of linearly independent eigenfunctions \(\{y_i (x; \lambda )\}_{i=1}^m \subset {\mathcal {D}}\) so that \({\mathcal {L}} (\lambda ) y_i (\cdot ; \lambda ) = 0\) for all \(i \in \{1, 2, \dots , m\}\). In addition, our Assumption (B1) ensures that the eigenvalues are all discrete (i.e., isolated). Our Theorems 1.1 and 1.2 count the number of such discrete eigenvalues, including geometric multiplicity, and it’s natural to consider how this relates to the same count using algebraic multiplicity. First, proceeding as in [19], we can define the algebraic multiplicity of an eigenvalue \(\lambda _0\) of \({\mathcal {L}}\) in terms of the nature of the Jordan chains associated with it. Readers interested in a complete definition along these lines can find it in Definition 6 of [19], but for our purposes, we only require the following.

Definition 5.2

Let \(\lambda _0 \in I\) be an eigenvalue of an operator pencil \({\mathcal {L}}: I \rightarrow {\mathbb {L}} (L^2 ((0,1),{\mathbb {C}}^{2n}))\) with geometric multiplicity m, and assume \({\mathcal {L}}'(\lambda _0) \in {\mathbb {L}} (L^2 ((0,1),{\mathbb {C}}^{2n}))\) exists, with additionally \({\text {dom}}\,({\mathcal {L}}'(\lambda _0)) = {\mathcal {D}}\). Suppose that for any pair \((y, \zeta )\) with \(y \in \ker {\mathcal {L}} (\lambda _0)\), and \(\zeta \in {\text {dom}}\,({\mathcal {L}} (\lambda _0))\) satisfying

$$\begin{aligned} {\mathcal {L}} (\lambda _0) \zeta = {\mathcal {L}}' (\lambda _0) y, \end{aligned}$$
(5.16)

we must have \(y \equiv 0\). Then \(\lambda _0\) has algebraic multiplicity m.

We are now in a position to verify that under slightly stronger conditions on \({\mathbb {B}} (x; \lambda )\) than assumed for Theorems 1.1 and 1.2, the geometric and algebraic multiplicies of eigenvalues of the operator pencil \({\mathcal {L}}: I \rightarrow {\mathbb {L}} (L^2 ((0,1),{\mathbb {C}}^{2n}))\) coincide.

Claim 5.1

Let Assumptions (A) and (B1) hold, and additionally assume that for all \(\lambda \in I\), we have \({\mathbb {B}} (\cdot ; \lambda ), {\mathbb {B}}_{\lambda } (\cdot ; \lambda ) \in L^2 ((0,1),{\mathbb {C}}^{2n \times 2n})\). Then for any eigenvalue \(\lambda _0\) of the operator pencil \({\mathcal {L}}\), geometric and algebraic multiplicities agree.

Proof

In our setting, \({\mathcal {L}}' (\lambda ) = {\mathbb {B}}_{\lambda } (x; \lambda )\). Suppose \(\lambda _0\) is an eigenvalue of \({\mathcal {L}}\), and that for some \(y (\cdot ; \lambda _0) \in \ker {\mathcal {L}} (\lambda _0)\), there is a corresponding \(\zeta (\cdot ; \lambda _0) \in {\mathcal {D}} ({\mathcal {L}})\) so that

$$\begin{aligned} {\mathcal {L}} (\lambda _0) \zeta (x; \lambda _0) = {\mathbb {B}}_{\lambda } (x; \lambda _0) y (x; \lambda _0), \quad \text {a.e. } x \in (0,1). \end{aligned}$$

(Our additional assumption \({\mathbb {B}}_{\lambda } (\cdot ; \lambda ) \in L^2 ((0,1),{\mathbb {C}}^{2n \times 2n})\) ensures that \({\mathcal {L}}' (\lambda _0)\) maps \({\mathcal {D}}\) to \(L^2 ((0,1),{\mathbb {C}}^{2n})\), and in particular that \({\mathbb {B}}_{\lambda } (x; \lambda _0) y (x; \lambda _0)\) is in the range of \({\mathcal {L}} (\lambda _0)\).) If we take an \(L^2\) inner product of this equation with y, we obtain the relation

$$\begin{aligned} \langle {\mathcal {L}} (\lambda _0) \zeta , y \rangle = \langle {\mathbb {B}}_{\lambda } (x; \lambda _0) y, y\rangle . \end{aligned}$$

Since \({\mathcal {L}} (\lambda _0)\) is self-adjoint, the left-hand side can be computed as

$$\begin{aligned} \langle {\mathcal {L}} (\lambda _0) \zeta , y \rangle = \langle \zeta , {\mathcal {L}} (\lambda _0) y \rangle = 0. \end{aligned}$$

We see that the right-hand side satisfies \(\langle {\mathbb {B}}_{\lambda } (\cdot ; \lambda _0) y, y \rangle = 0\), and by our positivity condition (B1) this means \(y = 0\) for a.e. \(x \in (0,1)\). According to Definition 5.2, we can conclude that the algebraic multiplicity of \(\lambda _0\) agrees with the geometric multiplicity of \(\lambda _0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howard, P., Sukhtayev, A. Renormalized Oscillation Theory for Linear Hamiltonian Systems on [0, 1] Via the Maslov Index. J Dyn Diff Equat 36, 535–575 (2024). https://doi.org/10.1007/s10884-021-10121-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10121-2

Keywords

Navigation