Skip to main content
Log in

Propagation Phenomena for a Nonlocal Dispersal Lotka–Volterra Competition Model in Shifting Habitats

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the propagation phenomena for a nonlocal dispersal Lotka–Volterra competition model with shifting habitats. It is assumed that the growth rate of each species is nondecreasing along the x-axis, positive near \(\infty \) and nonpositive near \(-\infty \), and shifting rightward with a speed \(c>0\). In the case where both species coexist near \(\infty \), we established three types of forced waves connecting the origin, respectively to the coexistence state with any forced speed c; to itself with forced speed \(c>c^{*}(\infty )\); and to a semi-trivial steady state with forced speed \(c>{\bar{c}}(\infty )\), where \(c^{*}(\infty )\) and \({\bar{c}}(\infty )\) are two positive numbers. In the case where one species is competitively stronger near \(\infty \), we also obtain the existence and nonexistence of forced waves connecting the origin to the semi-trivial steady state. Our results show the existence of multiple types of forced waves with the same forced speed. The mathematical proofs involve integral equations and Schauder’s fixed point theorem, and heavily rely on the construction of various upper-lower solutions, which adds new techniques to deal with the “shifting environments” problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, X., Li, W.T., Shen, W.: Traveling wave solutions of Lotka–Volterra competition systems with nonlocal dispersal in periodic habitats. J. Differ. Equ. 260, 8590–8637 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bates, P., Fife, P., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138, 105–136 (1997)

    Article  MathSciNet  Google Scholar 

  3. Berestycki, H., Diekmann, O., Nagelkerke, C., Zegeling, P.: Can a species keep pace with a shifting climate? Bull. Math. Biol. 71, 399–429 (2009)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  4. Berestycki, H., Fang, J.: Forced waves of the Fisher–KPP equation in a shifting environment. J. Differ. Equ. 264, 2157–2183 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. Berestycki, H., Rossi, L.: Reaction–diffusion equations for population dynamics with forced speed. II. Cylindrical-type domains. Discrete Contin. Dyn. Syst. 25, 19–61 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bouhours, J., Giletti, T.: Spreading and vanishing for a monostable reaction–diffusion equation with forced speed. J. Dyn. Differ. Equ. 31, 247–286 (2019)

    Article  MathSciNet  Google Scholar 

  7. Coville, J.: Can a population survive in a shifting environment using non-local dispersion. Nonlinear Anal. 212, 112416 (2021)

    Article  MathSciNet  Google Scholar 

  8. De Leenheer, P., Shen, W., Zhang, A.: Persistence and extinction of nonlocal dispersal evolution equations in moving habitats. Nonlinear Anal. Real World Appl. 54, 103110 (2020)

    Article  MathSciNet  Google Scholar 

  9. Dong, F.D., Li, B., Li, W.T.: Forced waves in a Lotka–Volterra diffusion-competition model with a shifting habitat. J. Differ. Equ. 276, 433–459 (2021)

    Article  ADS  Google Scholar 

  10. Dong, F.D., Li, W.T., Wang, J.B.: Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application. Discrete Contin. Dyn. Syst. 37, 6291–6318 (2017)

    Article  MathSciNet  Google Scholar 

  11. Fang, J., Lou, Y., Wu, J.: Can pathogen spread keep pace with its host invasion? SIAM J. Appl. Math. 76, 1633–1657 (2016)

    Article  MathSciNet  Google Scholar 

  12. Fang, J., Peng, R., Zhao, X.Q.: Propagation dynamics of a reaction–diffusion equation in a time-periodic shifting environment. J. Math. Pures Appl. 147, 1–28 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  13. Garnier, J.: Accelerating solutions in integro-differential equations. SIAM J. Math. Anal. 43, 1955–1974 (2011)

    Article  MathSciNet  Google Scholar 

  14. Hamel, F.: Reaction diffusion problems in cylinders with no invariance by translation. II. Monotone perturbations. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 555–596 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hamel, F., Roques, L.: Uniqueness and stability properties of monostable pulsating fronts. J. Eur. Math. Soc. 13, 345–390 (2011)

    Article  MathSciNet  Google Scholar 

  16. Hu, C., Shang, J., Li, B.: Spreading speeds for reaction–diffusion equations with a shifting habitat. J. Dyn. Differ. Equ. 32, 1941–1964 (2019)

    Article  MathSciNet  Google Scholar 

  17. Hu, H., Zou, X.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145, 4763–4771 (2017)

    Article  MathSciNet  Google Scholar 

  18. Hutson, V., Martinez, S., Mischaikow, K., Vickers, G.T.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  19. Kao, C.Y., Lou, Y., Shen, W.: Random dispersal vs non-local dispersal. Discrete Contin. Dyn. Syst. 26, 551–596 (2010)

    Article  MathSciNet  Google Scholar 

  20. Li, B., Bewick, S., Barnard, M.R., Fagan, W.F.: Persistence and spreading speeds of integro-difference equations with an expanding or contracting habitat. Bull. Math. Biol. 78, 1337–1379 (2016)

    Article  MathSciNet  PubMed  Google Scholar 

  21. Li, B., Wu, J.: Traveling waves in integro-difference equations with a shifting habitat. J. Differ. Equ. 268, 4059–4078 (2020)

    Article  MathSciNet  Google Scholar 

  22. Li, W.T., Wang, J.B., Zhao, X.Q.: Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J. Nonlinear Sci. 28, 1189–1219 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Li, W.T., Wang, J.B., Zhao, X.Q.: Propagation dynamics in a time periodic nonlocal dispersal model with stage structure. J. Dyn. Differ. Equ. 28, 1027–1064 (2020)

    Article  MathSciNet  Google Scholar 

  24. Lutscher, F., Pachepsky, E., Lewis, M.A.: The effect of dispersal patterns on stream populations. SIAM Rev. 47, 749–772 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. Qiao, S.X., Zhu, J.L., Wang, J.B.: Asymptotic behaviors of forced waves for the lattice Lotka–Volterra competition system with shifting habitats. Appl. Math. Lett. 118, 107168 (2021)

    Article  MathSciNet  Google Scholar 

  26. Wang, J.B., Li, W.T.: Wave propagation for a cooperative model with nonlocal dispersal under worsening habitats. Z. Angew. Math. Phys. 71, 147 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. Wang, J.B., Li, W.T., Dong, F.D., Qiao, S.X.: Recent developments on spatial propagation for diffusion equations in shifting environments. Discrete Contin. Dyn. Syst. Ser. B (2021). https://doi.org/10.3934/dcdsb.2021266

    Article  Google Scholar 

  28. Wang, J.B., Wu, C.: Forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats. Nonlinear Anal. Real World Appl. 58, 103208 (2021)

    Article  MathSciNet  Google Scholar 

  29. Wang, J.B., Zhao, X.Q.: Uniqueness and global stability of forced waves in a shifting environment. Proc. Am. Math. Soc. 147, 1467–1481 (2019)

    Article  MathSciNet  Google Scholar 

  30. Wu, C., Wang, Y., Zou, X.: Spatial-temporal dynamics of a Lotka–Volterra competition model with nonlocal dispersal under shifting environment. J. Differ. Equ. 267, 4890–4921 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Xu, W.B., Li, W.T., Lin, G.: Nonlocal dispersal cooperative systems: acceleration propagation among species. J. Differ. Equ. 268, 1081–1105 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. Xu, W.B., Li, W.T., Ruan, S.: Spatial propagation in nonlocal dispersal Fisher–KPP equations. J. Funct. Anal. 280, 108957 (2021)

    Article  MathSciNet  Google Scholar 

  33. Yang, Y., Wu, C., Li, Z.: Forced waves and their asymptotics in a Lotka–Volterra cooperative model under climate change. Appl. Math. Comput. 353, 254–264 (2019)

    Article  MathSciNet  Google Scholar 

  34. Zhang, G.B., Zhao, X.Q.: Propagation dynamics of a nonlocal dispersal Fisher–KPP equation in a time-periodic shifting habitat. J. Differ. Equ. 268, 2852–2885 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. Qiao, S.X., Li, W.T., Wang, J.B.: Multi-type forced waves in nonlocal dispersal KPP equations with shifting habitats. J. Math. Anal. Appl. 505, 125504 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Dong was partially supported by NSF of China (12101171) and NSF of Zhejiang Province (LQ22A010015), Li was partially supported by NSF of China (11731005) and NSF of Gansu Province (21JR7RA537) and Wang was partially supported by NSF of China (11901543) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGSX01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Tong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, FD., Li, WT. & Wang, JB. Propagation Phenomena for a Nonlocal Dispersal Lotka–Volterra Competition Model in Shifting Habitats. J Dyn Diff Equat 36, 63–91 (2024). https://doi.org/10.1007/s10884-021-10116-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10116-z

Keywords

Mathematics Subject Classification

Navigation